Aboul-Maaty NA-F, Oraby HA-S (2019) Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre 43:25. https://doi.org/10.1186/s42269-019-0066-1
Akdemir D, Beavis W, Fritsche-Neto R, et al (2019) Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity 122:672–683. https://doi.org/10.1038/s41437-018-0147-1
Akdemir D, Sánchez JI (2016) Efficient Breeding by Genomic Mating. Front Genet 7:210. https://doi.org/10.3389/fgene.2016.00210
Arbelaez JD, Dwiyanti MS, Tandayu E, et al (2019) 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. Rice 12:55. https://doi.org/10.1186/s12284-019-0311-0
Atlin GN, Cairns JE, Das B (2017a) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Security 12:31–37. https://doi.org/10.1016/j.gfs.2017.01.008
Bates D, Bates D. and Vazquez A. BD and VA (2014) Pedigreemm: Pedigree-based mixed-effects models. R package version 0.3-3.https://CRAN.Rproject.org/package=pedigreemm Bickhart DM., Hutchison DJ., Null DJ., VanRaden PM. and Cole JB. (2015). J Dairy Sci 99:5526 99:5526
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67:1–48. https://doi.org/doi.org/10.18637/jss.v067.i01
Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity 125:. https://doi.org/10.1038/s41437-020-0312-1
Boichard D, Maignel L, Verrier E (1997) The value of using probabilities of gene origin to measure genetic variability in a population. Genet Sel and Evol 29:5–23. https://doi.org/1297-9686-29-1-5
Bradbury PJ, Zhang Z, Kroon DE, et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308
Brar D, Khush G (2002) Transferring Genes from Wild Species into Rice. In: Kang MS (ed) Quantitative Genetics, Genomics, and Plant Breeding. p 197
Brar DS, Khush GS (2018) Wild Relatives of Rice: A Valuable Genetic Resource for Genomics and Breeding Research. In: Mondal TK, Henry RJ (eds) The Wild Oryza Genomes. Springer International Publishing, Cham, pp 1–25
Breseghello F, Morais OP de, Pinheiro PV, et al (2011) Results of 25 Years of Upland Rice Breeding in Brazil. Crop Science 51:914–923. https://doi.org/10.2135/cropsci2010.06.0325
Browning SR, Browning BL (2012) Identity by Descent Between Distant Relatives: Detection and Applications. Annual Review of Genetics 46:617–633. https://doi.org/10.1146/annurev-genet-110711-155534
Bruskiewich RM, Cosico AB, Eusebio W, et al (2003) Linking genotype to phenotype: the International Rice Information System (IRIS). Bioinformatics 19:i63–i65. https://doi.org/10.1093/bioinformatics/btg1006
Cassman KG (1994) Breaking the Yield Barrier: Proceedings of a Workshop on Rice Yield Potential in Favorable Environments, IRRI, 29 November-4 December 1993. Int. Rice Res. Inst.
Chandler RF (1982) An Adventure in Applied Science: A History of the International Rice Research Institute. IRRI
Cobb JN, Biswas PS, Platten JD (2019a) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132:647–667. https://doi.org/10.1007/s00122-018-3266-4
Cobb JN, Juma RU, Biswas PS, et al (2019b) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-019-03317-0
Collard B, . Gregorio B, Thomson M, Islam M (2019) Transforming Rice Breeding: Re-Designing the Irrigated Breeding Pipeline at the International Rice Research Institute (IRRI). Crop Breed Genet Genom. https://doi.org/10.20900/cbgg20190008
Collard B, Beredo J, Lenaerts B, et al (2017) Revisiting rice breeding methods – evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Production Science 20:1–16. https://doi.org/10.1080/1343943X.2017.1391705
Covarrubias-Pazaran G (2016) Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLOS ONE 11:e0156744. https://doi.org/10.1371/journal.pone.0156744
Damesa TM, Möhring J, Worku M, Piepho H-P (2017a) One Step at a Time: Stage-Wise Analysis of a Series of Experiments. Agronomy Journal 109:845–857. https://doi.org/10.2134/agronj2016.07.0395
Damesa TM, Worku M, Möhring, J, Piepho H (2017b) One Step at a Time: Stage‐Wise Analysis of a Series of Experiments. Biometry, Modeling & Statistics 09:845–857. https://doi.org/10.2134/agronj2016.07.0395
Garnett T, Appleby MC, Balmford A, et al (2013) Sustainable Intensification in Agriculture: Premises and Policies. Science 341:33–34. https://doi.org/10.1126/science.1234485
Garrick DJ (2010) An animal breeding approach to the estimation of genetic and environmental trends from field populations1. Journal of Animal Science 88:E3–E10. https://doi.org/10.2527/jas.2009-2329
Garrick DJ, Taylor JF, Fernando RL (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 41:55. https://doi.org/10.1186/1297-9686-41-55
Global Rice Science Partnership (2013) Rice Almanac: Source book for one of the most important economic activities on earth, 4th edn. International Rice Research Institute, Los Baños (Philippines)
Godfray HCJ (2014) The challenge of feeding 9–10 billion people equitably and sustainably. The Journal of Agricultural Science 152:2–8. https://doi.org/10.1017/S0021859613000774
Goto M (2012) Fundamentals of Bacterial Plant Pathology. Academic Press
Grenier C, Cao T-V, Ospina Y, et al (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS ONE 10:. https://doi.org/10.1371/journal.pone.0136594
Guimaraes EP (2009) Rice breeding. In: Cereals. Springer, pp 99–126
Gutiérrez JP, Cervantes I, Molina A, et al (2008) Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genet Sel Evol 40:359–378. https://doi.org/10.1186/1297-9686-40-4-359
Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genetics Research 38:209–216. https://doi.org/10.1017/S0016672300020553
Jia Y, Zhou E, Lee S, Bianco T (2016) Coevolutionary Dynamics of Rice Blast Resistance Gene Pi-ta and Magnaporthe oryzae Avirulence Gene AVR-Pita 1. Phytopathology 106:676–683. https://doi.org/10.1094/PHYTO-02-16-0057-RVW
Khush GS (2001) Green revolution: the way forward. Nature Reviews Genetics 2:815–822. https://doi.org/10.1038/35093585
Khush GS (2005) What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant Mol Biol 59:1–6. https://doi.org/10.1007/s11103-005-2159-5
Kumar A, Raman A, Yadav S, et al (2021) Genetic gain for rice yield in rainfed environments in India. Field Crops Research 260:107977. https://doi.org/10.1016/j.fcr.2020.107977
Leroy G, Mary-Huard T, Verrier E, et al (2013) Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genetics Selection Evolution 45:1. https://doi.org/10.1186/1297-9686-45-1
Li H, Handsaker B, Wysoker A, et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Li H, Rasheed A, Hickey LT, He Z (2018) Fast-Forwarding Genetic Gain. Trends in Plant Science 23:184–186. https://doi.org/10.1016/j.tplants.2018.01.007
Li J-Y, Wang J, Zeigler RS (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research. GigaScience 3:. https://doi.org/10.1186/2047-217X-3-8
Mackill DJ, Khush GS (2018) IR64: a high-quality and high-yielding mega variety. Rice 11:18. https://doi.org/10.1186/s12284-018-0208-3
Mansueto L, Fuentes RR, Borja FN, et al (2017) Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Research 45:D1075–D1081. https://doi.org/10.1093/nar/gkw1135
McCouch SR, Wright MH, Tung C-W, et al (2016) Open access resources for genome-wide association mapping in rice. Nature Communications 7:10532. https://doi.org/10.1038/ncomms10532
McLaren CG, Bruskiewich RM, Portugal AM, Cosico AB (2005a) The International Rice Information System. A Platform for Meta-Analysis of Rice Crop Data. Plant Physiology 139:637–642. https://doi.org/10.1104/pp.105.063438
McLaren CG, Bruskiewich RM, Portugal AM, Cosico AB (2005b) The International Rice Information System. A Platform for Meta-Analysis of Rice Crop Data. Plant Physiology 139:637–642. https://doi.org/10.1104/pp.105.063438
McLaren CG, Bruskiewich RM, Portugal AM, Cosico AB (2005c) The International Rice Information System. A Platform for Meta-Analysis of Rice Crop Data. Plant Physiology 139:637–642. https://doi.org/10.1104/pp.105.063438
Money D, Gardner K, Migicovsky Z, et al (2015) LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms. G3 (Bethesda) 5:2383–2390. https://doi.org/10.1534/g3.115.021667
Morais Júnior OP, Breseghello F, Duarte JB, et al (2017) Effectiveness of Recurrent Selection in Irrigated Rice Breeding. Crop Science 57:3043–3058. https://doi.org/10.2135/cropsci2017.05.0276
Nyine M, Wang S, Kiani K, et al (2019) Genotype Imputation in Winter Wheat Using First-Generation Haplotype Map SNPs Improves Genome-Wide Association Mapping and Genomic Prediction of Traits. G3: Genes, Genomes, Genetics 9:125–133. https://doi.org/10.1534/g3.118.200664
Peng S, Cassman KG, Virmani SS, et al (1999) Yield Potential Trends of Tropical Rice since the Release of IR8 and the Challenge of Increasing Rice Yield Potential. Crop Science 39:1552–1559. https://doi.org/10.2135/cropsci1999.3961552x
Peng S, Huang J, Sheehy JE, et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975. https://doi.org/10.1073/pnas.0403720101
Peng S, Khush G (2003) Four Decades of Breeding for Varietal Improvement of Irrigated Lowland Rice in the International Rice Research Institute. Plant Production Science 6:157–164. https://doi.org/10.1626/pps.6.157
Peng S, Khush GS, Virk P, et al (2008) Progress in ideotype breeding to increase rice yield potential. Field Crops Research 108:32–38
Peng S, Laza RC, Visperas RM, et al (2000) Grain Yield of Rice Cultivars and Lines Developed in the Philippines since 1966. Crop Science 40:307–314. https://doi.org/10.2135/cropsci2000.402307x
Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228. https://doi.org/10.1007/s10681-007-9449-8
Piepho H-P, Möhring J, Pflugfelder M, et al (2015) Problems in parameter estimation for power and AR(1) models of spatial correlation in designed field experiments. Communications in Biometry and Crop Science 10:3–16
Platten JD, Cobb JN, Zantua RE (2019) Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. PLOS ONE 14:e0210529. https://doi.org/10.1371/journal.pone.0210529
Portugal A, Balachandra R, Metz T, et al (2007) International crop information system for germplasm data management. Methods Mol Biol 406:459–471. https://doi.org/10.1007/978-1-59745-535-0_22
Rutkoski JE (2018) Estimation of realized rates of genetic gain and indicators for breeding program assessment. bioRxiv 409342. https://doi.org/10.1101/409342
Shanti ML, Shenoy VV, Devi GL, et al (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. Journal of Plant Pathology 92:495–501
Silvern S, Young S (2013) Environmental Change and Sustainability. BoD – Books on Demand
Smith AB, Cullis BR (2018) Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica 214:143. https://doi.org/10.1007/s10681-018-2220-5
Spilke J, Richter C, Piepho HP (2010) Model selection and its consequences for different split-plot designs with spatial covariance and trend. Plant Breeding 129:590–598. https://doi.org/10.1111/j.1439-0523.2010.01795.x
Sun C, Hu Z, Zheng T, et al (2017) RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Research 45:597–605. https://doi.org/10.1093/nar/gkw958
Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theoretical Population Biology 2:125–141. https://doi.org/10.1016/0040-5809(71)90011-6
Telebanco‐Yanoria MJ, Ohsawa R, Senoo S, et al (2008) Diversity analysis for resistance of rice (Oryza sativa L.) to blast disease [Magnaporthe grisea (Hebert) Barr.] using differential isolates from the Philippines. Plant Breeding 127:355–363. https://doi.org/10.1111/j.1439-0523.2008.01497.x
United Nations UN (2019) Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100. United Nations Department of Economic and Social Affairs
Virmani SS (1994) Hybrid Rice Technology: New Developments and Future Prospects
Walsh B (2003) Population - and Quantitative-Genetic Models of Selection Limits. In: Plant Breeding Reviews. John Wiley & Sons, Ltd, pp 177–225
Wang W, Mauleon R, Hu Z, et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49. https://doi.org/10.1038/s41586-018-0063-9
Wang X, Su G, Hao D, et al (2020) Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations. Journal of Animal Science and Biotechnology 11:3. https://doi.org/10.1186/s40104-019-0407-9
Warburton ML, Ribaut JM, Franco J, et al (2005) Genetic characterization of 218 elite CIMMYT maize inbred lines using RFLP markers. Euphytica 142:97–106. https://doi.org/10.1007/s10681-005-0817-y
Wei X, Qiu J, Yong K, et al (2021) A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics 53:243–253. https://doi.org/10.1038/s41588-020-00769-9
Wen W, Franco J, Chavez-Tovar VH, et al (2012) Genetic Characterization of a Core Set of a Tropical Maize Race Tuxpeño for Further Use in Maize Improvement. PLOS ONE 7:e32626. https://doi.org/10.1371/journal.pone.0032626
Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis, 2nd edn. Springer International Publishing
Wing RA, Purugganan MD, Zhang Q (2018) The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics 19:505–517. https://doi.org/10.1038/s41576-018-0024-z
Xie W, Wang G, Yuan M, et al (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. PNAS 112:E5411–E5419. https://doi.org/10.1073/pnas.1515919112
Xu Y, Li P, Zou C, et al (2017) Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany 68:2641–2666. https://doi.org/10.1093/jxb/erx135
Yadi R, Heravan IM, Heidari Sharifabad H (2021) Identifying the superior traits for selecting the ideotype of rice cultivars. CEREAL RESEARCH COMMUNICATIONS. https://doi.org/10.1007/s42976-020-00088-z