1. Sun Y, Liao M, He L, Zhu C. Comparison of breast-conserving surgery with mastectomy in locally advanced breast cancer after good response to neoadjuvant chemotherapy. Med (United States). Published online 2017. doi:10.1097/MD.0000000000008367
2. Asselain B, Barlow W, Bartlett J, et al. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. Published online 2018. doi:10.1016/S1470-2045(17)30777-5
3. Killelea BK, Yang VQ, Mougalian S, et al. Neoadjuvant chemotherapy for breast cancer increases the rate of breast conservation: Results from the national cancer database. J Am Coll Surg. Published online 2015. doi:10.1016/j.jamcollsurg.2015.02.011
4. King TA, Morrow M. Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy. Nat Rev Clin Oncol. Published online 2015. doi:10.1038/nrclinonc.2015.63
5. Houssami N, MacAskill P, Von Minckwitz G, Marinovich ML, Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. Published online 2012. doi:10.1016/j.ejca.2012.05.023
6. Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet. Published online 2014. doi:10.1016/S0140-6736(13)62422-8
7. Fowler AM, Mankoff DA, Joe BN. Imaging neoadjuvant therapy response in breast cancer. Radiology. Published online 2017. doi:10.1148/radiol.2017170180
8. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: An adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. Published online 2009. doi:10.1038/clpt.2009.68
9. Peeken JC, Bernhofer M, Wiestler B, et al. Radiomics in radiooncology – Challenging the medical physicist. Phys Medica. 2018;48:27-36. doi:10.1016/j.ejmp.2018.03.012
10. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278(2):563-577. doi:10.1148/radiol.2015151169
11. Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, Benali H. From hand-crafted to deep learning-based cancer radiomics: Challenges and opportunities. arXiv. Published online 2018.
12. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. Published online 2015. doi:10.1038/nature14539
13. Ting DSW, Yi PH, Hui F. Clinical applicability of deep learning system in detecting tuberculosis with chest radiography. Radiology. Published online 2018. doi:10.1148/radiol.2017172407
14. Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. Published online 2017. doi:10.1364/boe.8.003440
15. Tahmassebi A, Wengert GJ, Helbich TH, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol. Published online 2019. doi:10.1097/RLI.0000000000000518
16. Eun NL, Kang D, Son EJ, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer. Radiology. Published online 2020. doi:10.1148/radiol.2019182718
17. Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. Published online 2017. doi:10.1186/s13058-017-0846-1
18. Granzier RWY, van Nijnatten TJA, Woodruff HC, Smidt ML, Lobbes MBI. Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review. Eur J Radiol. Published online 2019. doi:10.1016/j.ejrad.2019.108736
19. Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B. Published online 1996. doi:10.1111/j.2517-6161.1996.tb02080.x
20. Zwanenburg A, Leger S, Agolli L, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. Published online 2019. doi:10.1038/s41598-018-36938-4
21. Van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. Published online 2017. doi:10.1158/0008-5472.CAN-17-0339
22. Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. Published online 2020. doi:10.1148/radiol.2020191145
23. Mackin D, Fave X, Zhang L, et al. Harmonizing the pixel size in retrospective computed tomography radiomics studies. PLoS One. 2017;12(9):e0178524. doi:10.1371/journal.pone.0178524
24. Shafiq-Ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E. Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep. 2018;8(1):10545. doi:10.1038/s41598-018-28895-9
25. Ibtehaz N, Rahman MS. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks. Published online 2020. doi:10.1016/j.neunet.2019.08.025
26. Braman N, Prasanna P, Whitney J, et al. Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer. JAMA Netw open. Published online 2019. doi:10.1001/jamanetworkopen.2019.2561
27. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. Published online 2018. doi:10.1016/S1470-2045(18)30413-3
28. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int J Comput Vis. Published online 2020. doi:10.1007/s11263-019-01228-7
29. Diamant A, Chatterjee A, Vallières M, Shenouda G, Seuntjens J. Deep learning in head & neck cancer outcome prediction. Sci Rep. Published online 2019. doi:10.1038/s41598-019-39206-1
30. Reuzé S, Orlhac F, Chargari C, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. Published online 2017. doi:10.18632/oncotarget.17856
31. Reuzé S, Schernberg A, Orlhac F, et al. Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int J Radiat Oncol Biol Phys. Published online 2018. doi:10.1016/j.ijrobp.2018.05.022
32. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. Published online 2017. doi:10.1038/nrclinonc.2017.141
33. Sanduleanu S, Woodruff HC, de Jong EEC, et al. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother Oncol. Published online 2018. doi:10.1016/j.radonc.2018.03.033