1. Ferlay, J., et al., Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer, 2019. 144(8): p. 1941-1953.
2. Ajani, J.A., et al., Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines. J Natl Compr Canc Netw, 2013. 11(5): p. 531-46.
3. Allemani, C., et al., Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018. 391(10125): p. 1023-1075.
4. Sharma, P. and J.P. Allison, The future of immune checkpoint therapy. Science, 2015. 348(6230): p. 56-61.
5. Sharma, P. and J.P. Allison, Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 2015. 161(2): p. 205-14.
6. Mellman, I., G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age. Nature, 2011. 480(7378): p. 480-9.
7. Magalhaes, H., M. Fontes-Sousa, and M. Machado, Immunotherapy in Advanced Gastric Cancer: An Overview of the Emerging Strategies. Can J Gastroenterol Hepatol, 2018. 2018: p. 2732408.
8. Fuchs, C.S., et al., Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol, 2018. 4(5): p. e180013.
9. Muro, K., et al., Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol, 2016. 17(6): p. 717-726.
10. Taieb, J., et al., Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat Rev, 2018. 66: p. 104-113.
11. Nakajima, T.E., et al., Multicenter Phase I/II Study of Nivolumab Combined with Paclitaxel Plus Ramucirumab as Second-line Treatment in Patients with Advanced Gastric Cancer. Clin Cancer Res, 2021. 27(4): p. 1029-1036.
12. Cogdill, A.P., M.C. Andrews, and J.A. Wargo, Hallmarks of response to immune checkpoint blockade. Br J Cancer, 2017. 117(1): p. 1-7.
13. Xu, W.H., et al., Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging (Albany NY), 2019. 11(17): p. 6999-7020.
14. Taube, J.M., et al., Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol, 2018. 31(2): p. 214-234.
15. Kaji, S., et al., Metabolomic profiling of gastric cancer tissues identified potential biomarkers for predicting peritoneal recurrence. Gastric Cancer, 2020. 23(5): p. 874-883.
16. Kono, K., S. Nakajima, and K. Mimura, Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer, 2020. 23(4): p. 565-578.
17. Figueroa-Protti, L., et al., Gastric Cancer in the Era of Immune Checkpoint Blockade. J Oncol, 2019. 2019: p. 1079710.
18. Zhang, Z., et al., Immune checkpoint inhibitors for treatment of advanced gastric or gastroesophageal junction cancer: Current evidence and future perspectives. Chin J Cancer Res, 2020. 32(3): p. 287-302.
19. Chenard-Poirier, M. and E.C. Smyth, Immune Checkpoint Inhibitors in the Treatment of Gastroesophageal Cancer. Drugs, 2019. 79(1): p. 1-10.
20. Cui, Y., et al., Identifying Predictive Factors of Recurrence after Radical Resection in Gastric Cancer by RNA Immune-oncology Panel. J Cancer, 2020. 11(3): p. 638-647.
21. Sakamoto, S., et al., Intraperitoneal cancer-immune microenvironment promotes peritoneal dissemination of gastric cancer. Oncoimmunology, 2019. 8(12): p. e1671760.
22. Chang, W.J., et al., Inflammation-related factors predicting prognosis of gastric cancer. World J Gastroenterol, 2014. 20(16): p. 4586-96.
23. Gagne, D., et al., Sequence-specific backbone resonance assignments and microsecond timescale molecular dynamics simulation of human eosinophil-derived neurotoxin. Biomol NMR Assign, 2017. 11(2): p. 143-149.
24. Wan, B., et al., Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging (Albany NY), 2019. 11(23): p. 11474-11489.
25. Yang, Y., et al., CGB5 expression is independently associated with poor overall survival and recurrence-free survival in patients with advanced gastric cancer. Cancer Med, 2018. 7(3): p. 716-725.
26. Burges, A., et al., Inhibin-betaA and -betaB subunits in normal and malignant glandular epithelium of uterine cervix and HeLa cervical cancer cell line. Arch Gynecol Obstet, 2011. 284(4): p. 981-8.
27. Boelens, M.C., et al., Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer. J Pathol, 2009. 218(2): p. 182-91.
28. Aleman-Muench, G.R. and G. Soldevila, When versatility matters: activins/inhibins as key regulators of immunity. Immunol Cell Biol, 2012. 90(2): p. 137-48.
29. Krysan, K., et al., Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res, 2005. 65(14): p. 6275-81.
30. Pai, R., et al., Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med, 2002. 8(3): p. 289-93.
31. Sheng, H., et al., Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem, 2001. 276(21): p. 18075-81.
32. Amano, H., et al., Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Sci, 2009. 100(12): p. 2318-24.
33. Sharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-26.
34. Mandelbrot, D.A., et al., B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. J Clin Invest, 2001. 107(7): p. 881-7.
35. Leach, D.R., M.F. Krummel, and J.P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996. 271(5256): p. 1734-6.
36. He, G., et al., Cytotoxic T lymphocyte antigen-4 (CTLA-4) expression in chordoma and tumor-infiltrating lymphocytes (TILs) predicts prognosis of spinal chordoma. Clin Transl Oncol, 2020. 22(12): p. 2324-2332.
37. Xu, F., et al., Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res, 2018. 37(1): p. 110.
38. Darvin, P., et al., Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med, 2018. 50(12): p. 1-11.
39. Editors, P.O., Expression of Concern: DUSP1 Is a Novel Target for Enhancing Pancreatic Cancer Cell Sensitivity to Gemcitabine. PLoS One, 2020. 15(5): p. e0233098.
40. Fang, J., et al., DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol Lett, 2018. 16(2): p. 1869-1875.
41. Li, J., et al., DUSP1 promoter methylation in peripheral blood leukocyte is associated with triple-negative breast cancer risk. Sci Rep, 2017. 7: p. 43011.
42. Shen, J., et al., Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med, 2016. 5(8): p. 2061-8.
43. Park, J., et al., TGF-beta1 and hypoxia-dependent expression of MKP-1 leads tumor resistance to death receptor-mediated cell death. Cell Death Dis, 2013. 4: p. e521.
44. Guo, G., et al., Immune cell concentrations among the primary tumor microenvironment in colorectal cancer patients predicted by clinicopathologic characteristics and blood indexes. J Immunother Cancer, 2019. 7(1): p. 179.
45. Liu, J.X., et al., Apolipoprotein A1 and B as risk factors for development of intraocular metastasis in patients with breast cancer. Cancer Manag Res, 2019. 11: p. 2881-2888.
46. Chen, C.L., et al., Identification of potential bladder cancer markers in urine by abundant-protein depletion coupled with quantitative proteomics. J Proteomics, 2013. 85: p. 28-43.
47. Koh, H., et al., The prognostic significance of CD63 expressionin patients with non-small cell lung cancer. Pol J Pathol, 2019. 70(3): p. 183-188.
48. Miki, Y., et al., Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS One, 2018. 13(9): p. e0202956.
49. Yeung, L., M.J. Hickey, and M.D. Wright, The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration. Front Immunol, 2018. 9: p. 1644.
50. Jiang, X., J. Zhang, and Y. Huang, Tetraspanins in cell migration. Cell Adh Migr, 2015. 9(5): p. 406-15.
51. Oh, J.H., et al., Spontaneous mutations in the single TTN gene represent high tumor mutation burden. NPJ Genom Med, 2020. 5: p. 33.
52. Yang, Y., et al., MUC4, MUC16, and TTN genes mutation correlated with prognosis, and predicted tumor mutation burden and immunotherapy efficacy in gastric cancer and pan-cancer. Clin Transl Med, 2020. 10(4): p. e155.
53. Li, L., M. Li, and X. Wang, Cancer type-dependent correlations between TP53 mutations and antitumor immunity. DNA Repair (Amst), 2020. 88: p. 102785.
54. Jardim, D.L., et al., The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell, 2021. 39(2): p. 154-173.
55. Alsaab, H.O., et al., PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol, 2017. 8: p. 561.
56. Oliva, M., et al., Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol, 2019. 30(1): p. 57-67.
57. Hansen, A.R. and L.L. Siu, PD-L1 Testing in Cancer: Challenges in Companion Diagnostic Development. JAMA Oncol, 2016. 2(1): p. 15-6.
58. Zhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020. 17(8): p. 807-821.
59. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
60. Wei, S., et al., Gastric Cancer Tumor Microenvironment Characterization Reveals Stromal-Related Gene Signatures Associated With Macrophage Infiltration. Front Genet, 2020. 11: p. 663.
61. Zeng, D., et al., Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunol Res, 2019. 7(5): p. 737-750.
62. Matsumoto, H., et al., Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat, 2016. 156(2): p. 237-47.
63. Crotty, S., Follicular helper CD4 T cells (TFH). Annu Rev Immunol, 2011. 29: p. 621-63.
64. Locati, M., G. Curtale, and A. Mantovani, Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol, 2020. 15: p. 123-147.
65. Funes, S.C., et al., Implications of macrophage polarization in autoimmunity. Immunology, 2018. 154(2): p. 186-195.
66. Heath, W.R., et al., Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol, 2019. 58: p. 44-52.
67. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.
68. Grisaru-Tal, S., et al., A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer, 2020. 20(10): p. 594-607.
69. Antonio, N., et al., The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J, 2015. 34(17): p. 2219-36.
70. Bodogai, M., et al., Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells. Cancer Res, 2015. 75(17): p. 3456-65.
71. Fridlender, Z.G., et al., Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 2009. 16(3): p. 183-94.
72. Lugade, A.A., et al., Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol, 2008. 180(5): p. 3132-9.
73. Soldevilla, B., et al., The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications. Eur J Cancer, 2019. 123: p. 118-129.
74. Vrana, D., et al., From Tumor Immunology to Immunotherapy in Gastric and Esophageal Cancer. Int J Mol Sci, 2018. 20(1).