[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 68(6) (2018) 394-424.
[2] T.K. Choueiri, R.J. Motzer, Systemic Therapy for Metastatic Renal-Cell Carcinoma, N Engl J Med 376(4) (2017) 354-366.
[3] A.A. Lalani, B.A. McGregor, L. Albiges, T.K. Choueiri, R. Motzer, T. Powles, C. Wood, A. Bex, Systemic Treatment of Metastatic Clear Cell Renal Cell Carcinoma in 2018: Current Paradigms, Use of Immunotherapy, and Future Directions, Eur Urol 75(1) (2019) 100-110.
[4] P.C. Barata, B.I. Rini, Treatment of renal cell carcinoma: Current status and future directions, CA Cancer J Clin 67(6) (2017) 507-524.
[5] H.I. Wettersten, O.A. Aboud, P.N. Lara, Jr., R.H. Weiss, Metabolic reprogramming in clear cell renal cell carcinoma, Nat Rev Nephrol 13(7) (2017) 410-419.
[6] I.J. Frew, H. Moch, A clearer view of the molecular complexity of clear cell renal cell carcinoma, Annu Rev Pathol 10 (2015) 263-89.
[7] H. Miess, B. Dankworth, A.M. Gouw, M. Rosenfeldt, W. Schmitz, M. Jiang, B. Saunders, M. Howell, J. Downward, D.W. Felsher, B. Peck, A. Schulze, The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma, Oncogene 37(40) (2018) 5435-5450.
[8] Y. Zou, M.J. Palte, A.A. Deik, H. Li, J.K. Eaton, W. Wang, Y.Y. Tseng, R. Deasy, M. Kost-Alimova, V. Dancik, E.S. Leshchiner, V.S. Viswanathan, S. Signoretti, T.K. Choueiri, J.S. Boehm, B.K. Wagner, J.G. Doench, C.B. Clish, P.A. Clemons, S.L. Schreiber, A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis, Nat Commun 10(1) (2019) 1617.
[9] G.C. Forcina, S.J. Dixon, GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis, Proteomics 19(18) (2019) e1800311.
[10] C. Porta, L. Cosmai, B.C. Leibovich, T. Powles, M. Gallieni, A. Bex, The adjuvant treatment of kidney cancer: a multidisciplinary outlook, Nat Rev Nephrol 15(7) (2019) 423-433.
[11] R.R. Kotecha, R.J. Motzer, M.H. Voss, Towards individualized therapy for metastatic renal cell carcinoma, Nat Rev Clin Oncol 16(10) (2019) 621-633.
[12] Z. Shen, J. Song, B.C. Yung, Z. Zhou, A. Wu, X. Chen, Emerging Strategies of Cancer Therapy Based on Ferroptosis, Adv Mater 30(12) (2018) e1704007.
[13] C. Liang, X. Zhang, M. Yang, X. Dong, Recent Progress in Ferroptosis Inducers for Cancer Therapy, Adv Mater 31(51) (2019) e1904197.
[14] L. Lin, S. Wang, H. Deng, W. Yang, L. Rao, R. Tian, Y. Liu, G. Yu, Z. Zhou, J. Song, H.H. Yang, Z.Y. Chen, X. Chen, Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy, J Am Chem Soc 142(36) (2020) 15320-15330.
[15] Y. An, J. Zhu, F. Liu, J. Deng, X. Meng, G. Liu, H. Wu, A. Fan, Z. Wang, Y. Zhao, Boosting the Ferroptotic Antitumor Efficacy via Site-Specific Amplification of Tailored Lipid Peroxidation, ACS Appl Mater Interfaces 11(33) (2019) 29655-29666.
[16] Z. Zhou, J. Song, R. Tian, Z. Yang, G. Yu, L. Lin, G. Zhang, W. Fan, F. Zhang, G. Niu, L. Nie, X. Chen, Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy, Angew Chem Int Ed Engl 56(23) (2017) 6492-6496.
[17] C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang, H. Yao, Z. Wang, J. Shi, Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction, Angew Chem Int Ed Engl 55(6) (2016) 2101-6.
[18] F. Zhang, F. Li, G.H. Lu, W. Nie, L. Zhang, Y. Lv, W. Bao, X. Gao, W. Wei, K. Pu, H.Y. Xie, Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer, Acs Nano 13(5) (2019) 5662-5673.
[19] S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, J. Shi, Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction, Adv Sci (Weinh) 6(3) (2019) 1801733.
[20] C. Liu, D. Wang, S. Zhang, Y. Cheng, F. Yang, Y. Xing, T. Xu, H. Dong, X. Zhang, Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief, Acs Nano 13(4) (2019) 4267-4277.
[21] S.S. Wan, Q. Cheng, X. Zeng, X.Z. Zhang, A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics, Acs Nano 13(6) (2019) 6561-6571.
[22] H. Feng, B.R. Stockwell, Unsolved mysteries: How does lipid peroxidation cause ferroptosis?, PLoS Biol 16(5) (2018) e2006203.
[23] X. Shan, S. Li, B. Sun, Q. Chen, J. Sun, Z. He, C. Luo, Ferroptosis-driven nanotherapeutics for cancer treatment, J Control Release 319 (2020) 322-332.
[24] P. Ma, H. Xiao, C. Yu, J. Liu, Z. Cheng, H. Song, X. Zhang, C. Li, J. Wang, Z. Gu, J. Lin, Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species, Nano Lett 17(2) (2017) 928-937.
[25] W.S. Yang, R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta, V.S. Viswanathan, J.H. Cheah, P.A. Clemons, A.F. Shamji, C.B. Clish, L.M. Brown, A.W. Girotti, V.W. Cornish, S.L. Schreiber, B.R. Stockwell, Regulation of ferroptotic cancer cell death by GPX4, Cell 156(1-2) (2014) 317-331.
[26] M.X. Wu, Y.W. Yang, Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy, Adv Mater 29(23) (2017).
[27] X. Ma, X. Ren, X. Guo, C. Fu, Q. Wu, L. Tan, H. Li, W. Zhang, X. Chen, H. Zhong, X. Meng, Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy, Biomaterials 214 (2019) 119223.
[28] X.G. Wang, Z.Y. Dong, H. Cheng, S.S. Wan, W.H. Chen, M.Z. Zou, J.W. Huo, H.X. Deng, X.Z. Zhang, A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy, Nanoscale 7(38) (2015) 16061-70.
[29] L. Liu, Y. Wei, S. Zhai, Q. Chen, D. Xing, Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy, Biomaterials 62 (2015) 35-46.
[30] Z. Fan, H. Liu, Y. Xue, J. Lin, Y. Liao, Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy, Bioactive Materials 6(2) (2021) 312-325.
[31] D. Wang, J. Zhou, R. Chen, R. Shi, G. Xia, S. Zhou, Z. Liu, N. Zhang, H. Wang, Z. Guo, Q. Chen, Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles, Biomaterials 107 (2016) 88-101.
[32] Z. Zhang, X. Li, B. Liu, Q. Zhao, G. Chen, Hexagonal microspindle of NH2-MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene, Rsc Adv 6(6) (2015) 4289-4295.
[33] X. Qian, J. Zhang, Z. Gu, Y. Chen, Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy, Biomaterials 211 (2019) 1-13.
[34] J. Liu, Z. Luo, J. Zhang, T. Luo, J. Zhou, X. Zhao, K. Cai, Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy, Biomaterials 83 (2016) 51-65.
[35] A. Hamdi, T.M. Roshan, T.M. Kahawita, A.B. Mason, A.D. Sheftel, P. Ponka, Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism, Biochim Biophys Acta 1863(12) (2016) 2859-2867.
[36] A. Terman, T. Kurz, Lysosomal iron, iron chelation, and cell death, Antioxid Redox Signal 18(8) (2013) 888-98.
[37] T. Liu, W. Liu, M. Zhang, W. Yu, F. Gao, C. Li, S.B. Wang, J. Feng, X.Z. Zhang, Ferrous-Supply-Regeneration Nanoengineering for Cancer-Cell-Specific Ferroptosis in Combination with Imaging-Guided Photodynamic Therapy, Acs Nano 12(12) (2018) 12181-12192.
[38] V. Trujillo-Alonso, E.C. Pratt, H. Zong, A. Lara-Martinez, C. Kaittanis, M.O. Rabie, V. Longo, M.W. Becker, G.J. Roboz, J. Grimm, M.L. Guzman, FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels, Nat Nanotechnol 14(6) (2019) 616-622.
[39] T. Xu, Y. Ma, Q. Yuan, H. Hu, X. Hu, Z. Qian, J.K. Rolle, Y. Gu, S. Li, Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform of Ferrous Hemoglobin for Tumor Synergistic Therapy, Acs Nano 14(3) (2020) 3414-3425.
[40] T.A. Rouault, The role of iron regulatory proteins in mammalian iron homeostasis and disease, Nat Chem Biol 2(8) (2006) 406-14.
[41] J.L. Heath, J.M. Weiss, C.P. Lavau, D.S. Wechsler, Iron deprivation in cancer--potential therapeutic implications, Nutrients 5(8) (2013) 2836-59.
[42] S.V. Torti, F.M. Torti, Ironing out cancer, Cancer Res 71(5) (2011) 1511-4.
[43] Z.K. Pinnix, L.D. Miller, W. Wang, R. D'Agostino, Jr., T. Kute, M.C. Willingham, H. Hatcher, L. Tesfay, G. Sui, X. Di, S.V. Torti, F.M. Torti, Ferroportin and iron regulation in breast cancer progression and prognosis, Sci Transl Med 2(43) (2010) 43ra56.
[44] L.L. Dunn, Y. Suryo Rahmanto, D.R. Richardson, Iron uptake and metabolism in the new millennium, Trends Cell Biol 17(2) (2007) 93-100.
[45] A.T. McKie, D. Barrow, G.O. Latunde-Dada, A. Rolfs, G. Sager, E. Mudaly, M. Mudaly, C. Richardson, D. Barlow, A. Bomford, T.J. Peters, K.B. Raja, S. Shirali, M.A. Hediger, F. Farzaneh, R.J. Simpson, An iron-regulated ferric reductase associated with the absorption of dietary iron, Science 291(5509) (2001) 1755-9.
[46] Hadi, Ranji-Burachaloo, Paul, Andrew, Gurr, Dave, Dunstan, Greg, Cancer Treatment Through Nanoparticle Facilitated Fenton Reaction, Acs Nano (2018).
[47] Z. Shen, T. Liu, Y. Li, J. Lau, Z. Yang, W. Fan, Z. Zhou, C. Shi, C. Ke, V.I. Bregadze, S.K. Mandal, Y. Liu, Z. Li, T. Xue, G. Zhu, J. Munasinghe, G. Niu, A. Wu, X. Chen, Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors, Acs Nano 12(11) (2018) 11355-11365.
[48] T. Zhu, L. Shi, C. Yu, Y. Dong, F. Qiu, L. Shen, Q. Qian, G. Zhou, X. Zhu, Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment, Theranostics 9(11) (2019) 3293-3307.