1. Khoury, S. R., N. S. Evans and E. V. Ratchford Exercise as medicine. Vasc Med. 2019;24(4): 371-374.
2. Moreira, J. B. N., M. Wohlwend and U. Wisløff Exercise and cardiac health: physiological and molecular insights. Nature metabolism. 2020;2(9): 829-839.
3. Konhilas, J. P., A. H. Maass, S. W. Luckey, et al. Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol. 2004;287(6): H2768-2776.
4. Radovits, T., A. Olah, A. Lux, et al. Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis. Am J Physiol Heart Circ Physiol. 2013;305(1): H124-134.
5. Mi, C., X. Qin, Z. Hou and F. Gao Moderate-intensity exercise allows enhanced protection against oxidative stress-induced cardiac dysfunction in spontaneously hypertensive rats. Braz J Med Biol Res. 2019;52(6): e8009.
6. Kemi, O. J., P. M. Haram, U. Wisløff and Ø. Ellingsen Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation. 2004;109(23): 2897-2904.
7. Wang, Y., U. Wisloff and O. J. Kemi Animal models in the study of exercise-induced cardiac hypertrophy. Physiol Res. 2010;59(5): 633-644.
8. Tang, X. Y., H. S. Hong, L. L. Chen, et al. Effects of exercise of different intensities on the angiogenesis, infarct healing, and function of the left ventricle in postmyocardial infarction rats. Coron Artery Dis. 2011;22(7): 497-506.
9. Ellison, G. M., C. D. Waring, C. Vicinanza and D. Torella Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98(1): 5-10.
10. Nakamura, M. and J. Sadoshima Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7): 387-407.
11. Davos, C. H. Do we have to reconsider the guidelines for exercise intensity determination in cardiovascular rehabilitation? Eur J Prev Cardiol. 2019;26(18): 1918-1920.
12. Pagan, L. U., R. L. Damatto, M. J. Gomes, et al. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J Cell Mol Med. 2019;23(9): 6504-6507.
13. Wasfy, M. M. and A. L. Baggish Exercise Dose in Clinical Practice. Circulation. 2016;133(23): 2297-2313.
14. Swain, D. P. and B. A. Franklin Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1): 141-147.
15. Olah, A., B. T. Nemeth, C. Matyas, et al. Cardiac effects of acute exhaustive exercise in a rat model. Int J Cardiol. 2015;182: 258-266.
16. Ljones, K., H. O. Ness, K. Solvang-Garten, S. E. Gaustad and M. A. Hoydal Acute exhaustive aerobic exercise training impair cardiomyocyte function and calcium handling in Sprague-Dawley rats. PLoS One. 2017;12(3): e0173449.
17. Yan, Z. P., J. T. Li, N. Zeng and G. X. Ni Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy. Cardiol J. 2021;28(3): 473-482.
18. Bueno, O. F., L. J. De Windt, K. M. Tymitz, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. Embo j. 2000;19(23): 6341-6350.
19. Kehat, I., J. Davis, M. Tiburcy, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108(2): 176-183.
20. Ni, G. X., S. Y. Liu, L. Lei, et al. Intensity-dependent effect of treadmill running on knee articular cartilage in a rat model. Biomed Res Int. 2013;2013: 172392.
21. Krzesiak, A., N. Delpech, S. Sebille, C. Cognard and A. Chatelier Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes to Chronic Exercise. Adv Exp Med Biol. 2017;999: 75-90.
22. Shioi, T., J. R. McMullen, O. Tarnavski, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107(12): 1664-1670.
23. Tang, X., X. F. Chen, N. Y. Wang, et al. SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy. Circulation. 2017;136(21): 2051-2067.
24. Libonati, J. R., A. Sabri, C. Xiao, S. M. Macdonnell and B. F. Renna Exercise training improves systolic function in hypertensive myocardium. J Appl Physiol (1985). 2011;111(6): 1637-1643.
25. Benito, B., G. Gay-Jordi, A. Serrano-Mollar, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011;123(1): 13-22.
26. Malek, L. A. and C. Bucciarelli-Ducci Myocardial fibrosis in athletes-Current perspective. Clin Cardiol. 2020;43(8): 882-888.
27. Oxborough, D., K. Birch, R. Shave and K. George "Exercise-induced cardiac fatigue"--a review of the echocardiographic literature. Echocardiography. 2010;27(9): 1130-1140.
28. Oosthuyse, T., I. Avidon, I. Likuwa and A. J. Woodiwiss Progression of changes in left ventricular function during four days of simulated multi-stage cycling. Eur J Appl Physiol. 2012;112(6): 2243-2255.
29. Asif, Y., M. E. Wlodek, M. J. Black, et al. Sustained cardiac programming by short-term juvenile exercise training in male rats. J Physiol. 2018;596(2): 163-180.
30. Nikolaidou, C. and T. Karamitsos Should everyone have an MRI in heart failure? Cardiovasc Diagn Ther. 2020;10(3): 549-553.
31. Russo, V., L. Lovato and G. Ligabue Cardiac MRI: technical basis. Radiol Med. 2020;125(11): 1040-1055.
32. Mair, J., N. Genser, D. Morandell, et al. Cardiac troponin I in the diagnosis of myocardial injury and infarction. Clin Chim Acta. 1996;245(1): 19-38.
33. Liao, J., Y. Li, F. Zeng and Y. Wu Regulation of mTOR Pathway in Exercise-induced Cardiac Hypertrophy. Int J Sports Med. 2015;36(5): 343-350.
34. Kosowski, M., K. Mlynarska, J. Chmura, et al. Cardiovascular stress biomarker assessment of middle-aged non-athlete marathon runners. Eur J Prev Cardiol. 2019;26(3): 318-327.
35. Gallo, S., A. Vitacolonna, A. Bonzano, P. Comoglio and T. Crepaldi ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int J Mol Sci. 2019;20(9).
36. Lorenz, K., J. P. Schmitt, E. M. Schmitteckert and M. J. Lohse A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med. 2009;15(1): 75-83.
37. Tomasovic, A., T. Brand, C. Schanbacher, et al. Interference with ERK-dimerization at the nucleocytosolic interface targets pathological ERK1/2 signaling without cardiotoxic side-effects. Nature Communications. 2020;11(1).
38. Mutlak, M., M. Schlesinger-Laufer, T. Haas, et al. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy. Int J Cardiol. 2018;270: 204-213.
39. Purcell, N. H., B. J. Wilkins, A. York, et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A. 2007;104(35): 14074-14079.
40. Iemitsu, M., S. Maeda, S. Jesmin, et al. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. J Appl Physiol (1985). 2006;101(1): 151-163.