1. Hadjipanayis, C.G. and W. Stummer, 5-ALA and FDA approval for glioma surgery. Journal of neuro-oncology, 2019. 141(3): p. 479–486.
2. Stummer, W., et al., Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol, 2006. 7(5): p. 392–401.
3. Lacroix, M., et al., A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg, 2001. 95(2): p. 190-8.
4. Beller, E.M., et al., PRISMA for Abstracts: reporting systematic reviews in journal and conference abstracts. PLoS Med, 2013. 10(4): p. e1001419.
5. Stepp, H., et al., ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol, 2007. 26(2): p. 157 − 64.
6. Kim, S.K., et al., Impact of fluorescence-guided surgery on the improvement of clinical outcomes in glioblastoma patients. Neuro-Oncology Practice, 2014. 1(3): p. 81–85.
7. Picart, T., et al., Is fluorescence-guided surgery with 5-ala in eloquent areas for malignant gliomas a reasonable and useful technique? Neurochirurgie, 2017. 63(3): p. 189–196.
8. Slotty, P.J., et al., The impact of improved treatment strategies on overall survival in glioblastoma patients. Acta Neurochir (Wien), 2013. 155(6): p. 959 − 63; discussion 963.
9. Stummer, W., et al., Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J Neurosurg, 2011. 114(3): p. 613 − 23.
10. Díez Valle, R., et al., Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study). Neurologia, 2014. 29(3): p. 131-8.
11. Ng, W.P., et al., Fluorescence-Guided versus Conventional Surgical Resection of High Grade Glioma: A Single-Centre, 7-Year, Comparative Effectiveness Study. Malays J Med Sci, 2017. 24(2): p. 78–86.
12. Eljamel, M.S., C. Goodman, and H. Moseley, ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci, 2008. 23(4): p. 361-7.
13. Eyüpoglu, I.Y., et al., Supra-complete surgery via dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma. Oncotarget; Vol 7, No 18, 2016.
14. Hauser, S.B., et al., Combining 5-aminolevulinic acid fluorescence and intraoperative magnetic resonance imaging in glioblastoma surgery: A histology-based evaluation. Neurosurgery, 2016. 78(4): p. 475–483.
15. Hickmann, A.-K., M. Nadji-Ohl, and N.J. Hopf, Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. Journal of Neuro-Oncology, 2015. 122(1): p. 151–160.
16. Jacquesson, T., et al., Surgery of high-grade gliomas guided by fluorescence: A retrospective study of 22 patients. Neurochirurgie, 2013. 59(1): p. 9–16.
17. Aldave, G., et al., Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic Acid-guided surgery. Neurosurgery, 2013. 72(6): p. 915 − 20; discussion 920-1.
18. Pichlmeier, U., et al., Resection and survival in glioblastoma multiforme: An RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncology, 2008. 10(6): p. 1025–1034.
19. Stummer, W., et al., Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg, 2000. 93(6): p. 1003-13.
20. Panciani, P.P., et al., Fluorescence and image guided resection in high grade glioma. Clinical Neurology and Neurosurgery, 2012. 114(1): p. 37–41.
21. Díez Valle, R. and S. Tejada Solis, To what extent will 5-aminolevulinic acid change the face of malignant glioma surgery? CNS oncology, 2015. 4(4): p. 265–272.
22. Della Puppa, A., et al., 5-Aminolevulinic acid fluorescence in high grade glioma surgery: surgical outcome, intraoperative findings, and fluorescence patterns. Biomed Res Int, 2014. 2014: p. 232561.
23. Della Puppa, A., et al., 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochirurgica, 2013. 155(6): p. 965–972.
24. Díez Valle, R., et al., Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol, 2011. 102(1): p. 105 − 13.
25. Idoate, M.A., et al., Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology, 2011. 31(6): p. 575 − 82.
26. Hefti, M., et al., 5-Aminolaevulinic acid-induced protoporphyrin IX fluorescence in high-grade glioma surgery. Swiss Medical Weekly, 2008. 138(11–12): p. 180–185.
27. Schucht, P., et al., Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery, 2012. 71(5): p. 927 − 35; discussion 935-6.
28. Teixidor, P., et al., Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study. PloS one, 2016. 11(2): p. e0149244-e0149244.
29. Eriksson, M., et al., Improved treatment of glioblastoma - changes in survival over two decades at a single regional Centre. Acta Oncol, 2019. 58(3): p. 334–341.
30. Nabavi, A., et al., Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery, 2009. 65(6): p. 1070-6; discussion 1076-7.
31. Chan, D.T.M., H. Yi-Pin Sonia, and W.S. Poon, 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J Surg, 2018. 41(5): p. 467–472.
32. Cordova, J.S., et al., Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol Imaging Biol, 2016. 18(3): p. 454 − 62.
33. Cortnum, S. and R.J. Laursen, Fluorescence-guided resection of gliomas. Dan Med J, 2012. 59(8): p. A4460.
34. Pastor, J., et al., Role of intraoperative neurophysiological monitoring during fluorescence-guided resection surgery. Acta Neurochir (Wien), 2013. 155(12): p. 2201-13.
35. Feigl, G.C., et al., Resection of malignant brain tumors in eloquent cortical areas: A new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. Journal of Neurosurgery, 2010. 113(2): p. 352–357.
36. Piquer, J., et al., Fluorescence-Guided Surgery and Biopsy in Gliomas with an Exoscope System. BioMed Research International, 2014. 2014: p. 207974.
37. Stummer, W., et al., Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery, 2008. 62(3): p. 564 − 76; discussion 564 − 76.
38. Tykocki, T., et al., Fluorescence-guided resection of primary and recurrent malignant gliomas with 5-aminolevulinic acid. Preliminary results. Neurol Neurochir Pol, 2012. 46(1): p. 47–51.
39. Barbagallo, G.M.V., et al., Portable Intraoperative Computed Tomography Scan in Image-Guided Surgery for Brain High-grade Gliomas: Analysis of Technical Feasibility and Impact on Extent of Tumor Resection. Oper Neurosurg (Hagerstown), 2016. 12(1): p. 19–30.
40. Coburger, J., et al., Surgery for Glioblastoma: Impact of the Combined Use of 5-Aminolevulinic Acid and Intraoperative MRI on Extent of Resection and Survival. PLoS One, 2015. 10(6): p. e0131872.
41. Eyüpoglu, I.Y., et al., Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PloS one, 2012. 7(9): p. e44885-e44885.
42. Nickel, K., et al., The patients’ view: impact of the extent of resection, intraoperative imaging, and awake surgery on health-related quality of life in high-grade glioma patients—results of a multicenter cross-sectional study. Neurosurgical Review, 2018. 41(1): p. 207–219.
43. Tsugu, A., et al., Impact of the Combination of 5-Aminolevulinic Acid–Induced Fluorescence with Intraoperative Magnetic Resonance Imaging–Guided Surgery for Glioma. World Neurosurgery, 2011. 76(1): p. 120–127.
44. Roder, C., et al., Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol, 2014. 40(3): p. 297–304.
45. Schatlo, B., et al., Outcomes after combined use of intraoperative MRI and 5-aminolevulinic acid in high-grade glioma surgery. Neuro Oncol, 2015. 17(12): p. 1560-7.
46. Yamada, S., et al., Role of neurochemical navigation with 5-aminolevulinic acid during intraoperative MRI-guided resection of intracranial malignant gliomas. Clinical Neurology and Neurosurgery, 2015. 130: p. 134–139.
47. Della Pepa, G.M., et al., 5-Aminolevulinic Acid and Contrast-Enhanced Ultrasound: The Combination of the Two Techniques to Optimize the Extent of Resection in Glioblastoma Surgery. Neurosurgery, 2020. 86(6): p. E529-e540.
48. Neidert, M.C., et al., The influence of intraoperative resection control modalities on survival following gross total resection of glioblastoma. Neurosurgical Review, 2016. 39(3): p. 401–409.
49. Colapaoli, L., et al., A case of anaphylactic shock possibly caused by intravesical Hexvix. Acta Anaesthesiol Scand, 2006. 50(9): p. 1165-7.
50. Kreth, F.W., et al., Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy. Ann Oncol, 2013. 24(12): p. 3117-23.
51. Nader, S., et al., An extent of resection threshold for newly diagnosed glioblastomas. Journal of Neurosurgery JNS, 2011. 115(1): p. 3–8.
52. Schucht, P., et al., 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochirurgica, 2014. 156(2): p. 305–312.