[1] Błażewicz S., Stoch L.: Biomaterials, vol. 4.Akademicka Oficyna Wydawnicza Exit, Warszawa 2003
[2] Świeczko-Żurek B.: Biomaterials, WPG 2009
[3] Boccaccini A.R., Gerhardt L.C.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, [ed:] Materials 2010, 3, 2867–3910
[4] Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E.: Biomaterials Science: An introduction to materials in medicine, ed. Academic Press, 1996
[5] Dziadek M., Pawlik J., Cholewa-Kowalska K.: Bioactive glasses for tissue engineering Acta Bio-Optica et Informatica Medica - Inżynieria Biomedyczna 2014 vol 20 no 3, pp 156–165
[6] Dziadek M., Zagrajczuk B., Jeleń P., Olejniczak Z., Cholewa-Kowalska K.: Structural variations of bioactive glasses obtained by different synthesis routes, Ceramics International Volume 42, Issue 13, 2016, pp 14700–14709, https://doi.org/10.1016/j.ceramint.2016.06.095
[7] Sachlos E., Czernuszka J. T.: Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells and Materials, AO Research Institute Davos, Davos 2003
[8] Staniewicz-Brudnik B., Lekka M.: Biocompatible glass-ceramic composite- manufacturing and selected physicalmechanical properties. Sintering of Ceramics, new Emerging Techniques / Book. ISBN 978-953-51-0017-1. Ed: Prof. Dr Arunachalam Lakshmanan. Saveetha Engineering College, Thandalam, Chennai, India, chapter 11 pp. 227–250, 2012
[9] Yang F., Li C., Lin Y., Wang C. A.: Effects of sintering temperature on properties of porous mullite/corundum ceramics [in:] Materials Letters 73 (2012) pp. 36–39; https://doi.org/10.1016/j.matlet.2011.12.087
[10] Jaegermann Z., Ślósarczyk A.: Dense and porous corundum bioceramics in medical application. Uczelniane Wydawnictwo Naukowo–Dydaktyczne AGH, Kraków 2007, (in Polish)
[11] Staniewicz-Brudnik B., Lekka M., Bączek E., Wodnicka K., Miller T., Wilk W.: Biocomposites with submicrocrystalline sintered corundum and bioglass system as a scaffolds and their structural and physical properties. Short- and long-term culture of the fibroblast human skin on these substrate. Optica Applicata. Vol XLII, 2, pp 387–397, Wrocław 2012, DOI: 10.5277/oa120216
[12] Staniewicz-Brudnik B., Lekka M., Jaworska L., Wilk W.: Biocompatible glass composite system – some physical-mechanical properties of the glass composite matrix system. Optica Applicata, Institute of Physics, Wrocław University of Technology, Wrocław 2010
[13] Niżankowski Cz.: Manufacturing sintered corundum abradants. Archives of Civil and Mechanical Engineering, Faculty of Mechanical Engineering Wrocław University of Technology, Wrocław 2002
[14] Staniewicz-Brudnik B., Szarska S. and Gamrat K.: The influence of mechanochemical treatment of sintered submicrocrystalline corundum scaffolds on the structure of bioglass composites. Journal of Superhard Materials, Volume 30, Number 6 (2008), 392–399, DOI: 10. 3103/S1063457608060051
[15] Young RA. The Rietveld method. Oxford University Press; 1993.
[16] McCusker LB, Von Dreele RB, Cox DE, et al. Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 1999, 36–50. https://doi.org/10.1107/S0021889898009856
[17] Karolus M., Łągiewka E.: Crystallite size and lattice strain in nanocrystalline Ni-Mo alloys studied by Rietveld Refinement. Journal of Alloys and Compounds 367 (2004) 235-238. DOI: 10.1016/j.jallcom.2003.08.044
[18] Karolus M.: Applications of Rietveld refinement in Fe-B-Nb alloy structure studies. Journal of Materials Processing Technology 175 (2006) 246 - 250. https://doi.org/10.1016/j.jmatprotec.2005.04.016