Continuous electrical discharge machining (EDM) is characterized by random discharge positions, uncertain discharge energy, extremely short discharge time, extremely narrow tool-workpiece gaps, etc. Theoretical research into the mechanisms leading to thermal erosion of material and the associated surface morphology has become urgent to allow the continued development and application of EDM technology. Firstly, multi-pulse theory and geometric optimization are utilized to derive an expression for the material removal rate and surface roughness in multi-pulse EDM. Secondly, Based on the characteristics of multi-pulse discharge, a multi-pulse numerical simulation model was established to predict the material removal volume, surface roughness and thickness of recast layer. Finally, the results predicted by the geometric and numerical models are compared with the experimental results. Experimentally, 0.176 mg of material is removed in the multi-pulse EDM; the theoretical calculation and numerical simulation of the same produce errors of 5.11% and 11.36%, respectively. The analogous results for the surface roughness are 1.623 µm, 8.93%, and 1.23%. The experimentally determined thickness of the recast layer was 5.31 µm, which corresponds to an error in the simulation error of 7.53%.