[1] Ravi V, Indira P. Crop physiology of sweet potato. Hortic. Rev. 1999; 23:277–338.
[2] Solis JA, Villordon N., Baisakh D, LaBonte,Firon N. Effect of drought on storage root development and gene expression profile of sweetpotato under greenhouse and field conditions. Journal of the American Society for Horticultural Science. 2014; 139:317-324
[3] Laurie SM, Booyse M. Employing the GGE SREG model plus Elston index values for multiple trait selection in sweetpotato. Euphytica. 2015; 204(2):433-442.
[4] Gurmu F, Hussein S, Laing M. Genotype-by-environment interaction and stability of sweetpotato genotypes for root dry matter, β-carotene and fresh root yield. Open Agriculture, 2017; 2: 473-485.
[5] Kim YH, Park SC, Ji CY, Lee JJ, Jeong JC, Lee HS, Kwak SS. Diverse antioxidant enzyme levels in different sweetpotato root types during storage root formation. Plant Growth Regul. 2015; 75:155–164. DOI 10.1007/s10725-014-9940-x
[6] Ma J, Aloni R, Villordon A, Labonte D, Kfir Y, Zemach H, Schwartz A, Althan L, Firon N. Adventitious root primordia formation and development in stem nodes of ‘Georgia Jet’sweetpotato, Ipomoea batatas. AMERICAN JOURNAL OF BOTANY, 2015; 102( 7 ): 1040 – 1049.
[7] Bararyenya A, Tukamuhabwa P, Gibson P, Grüneberg W, Ssali R, Low J, Odong T, Ochwo-Ssemakula M, Talwana H, MwilaN Mwanga R. Continuous Storage Root Formation and Bulking in Sweetpotato. Gates Open Research. 2019; 3: 83 https://doi.org/10.12688/gatesopenres.12895.1).
[8] Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin Biosynthesis and Structure. Plant Physiology. 2010; 153: 895–905.
[9] Wang H, Yang J, Zhang M, Fan W, Firon N, Pattanaik S, et al. Altered phenylpropanoid metabolism in the maize Lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Sci. Rep. 2016; 6: 18645. doi: 18610.11038/ srep18645
[10] Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics. 2013; 14:460.
[11] Ohashi-Ito K.Oda Y,Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern pro-grammed cell death and secondary wall formation during xylem differentiation. Plant Cell. 2010; 22:3461–3473.
[12] Zhou J, Lee C, Zhong R, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell. 2009; 21: 248–266.
[13] Yang L, Zhao X, Yang F, Fan D, Jiang Y, Luo K. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall forma-tion in Populus trichocarpa. Sci. Rep. 2016; 6: 18643.
[14] Chen HC, Song J, Wang JP, Lin YC, Ducoste J, Shuford CM, Liu J, Li Q, Shi R, Nepomuceno A, Isik F, Muddiman DC, Williams C, Sederoff RR, Chiang VL. Systems biology of lignin biosynthesis in Populustrichocarpa: heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling. Plant Cell. 2014; 26: 876–893.
[15] Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L, Yeh TF, Peszlen I, Ralph J, Sederoff RR, Chiang VL. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populustrichocarpa. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 10848–10853.
[16] Jin Y, Ye N, Zhu F, Li H, Wang J, Jiang L, Zhang J. Calcium-dependent protein kinase CPK28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis. The Plant Journal. 2017; 90:304–318. doi: 10.1111/tpj.13493
[17] Huang D, Wang S, Zhang B, Shang-Guan K, Zhou Y. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell. 2015; 27:1681–1696.
[18] Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y , Yang H, Cai Y, Strnad M, Liu C. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Com-mun. 2014; 5: 3274.
[19] Kim S, Nie H, Jun B, Kim J, Lee J , Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes & Genomics.2020; 42: 581–596.
[20] Liu R, Cai XT, Zhao PX, Xu P, Xiang CB. Arabidopsis ERF109 regulates auxin transport-related genes in root development. BioRxiv. 2019.
https://doi.org/10.1101/725572
[21] Ohashi-Ito K, Matsukawa M, Fukuda H. A typical bHLH Transcription Factor Regulates Early Xylem Development Downstream of Auxin. Plant and Cell Physiology. 2013; 54(3): 398–405. https://doi.org/10.1093/pcp/pct013
[22] Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. The Plant Cell. 2005; 17: 1376–1386.
[23] Nakano Y, Yamaguchi M, Endo H, Rejab NA,Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front. Plant Sci. 2015; 6: 288-31.
[24] Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 22338-22343.
[25] Silverstone AL, Ciampaglio CN, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998; 10: 155–169.
[26] Kazan K. Auxin and the integration of environmental signals into plant root development. Annals of Botany. 2013; 112(9): 1655–1665doi:10.1093/aob/mct229
[27] Zhu MD, Xie HJ, Wei XJ, Dossa K, Yu YY, Hui AZ, Tang GH, Zeng XS, Yu YH, Hu PS, Wang JL. WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice. Genes. 2019; 10: 719, doi: 10.3390/genes10090719
[28] Togari Y. A study in the tuberous-root formation of sweet potato. Bull. Natl. Agric.Exp. Sta. 1950; 68:1–96.
[29] Kokubu T. Thremmatological studies on the relationship between the structure oftuberous root and its starch accumulating function in sweet potato varieties. Bull. Fac.Agric. Kagoshima Univ. 1973; 23:1–126.
[30] Siebers T, Catarino B, Agusti J. Identification and expression analyses of newof potential regulators xylem development and cambium activity in cassava (Manihot esculenta). Planta. 2017; 245:539–548.doi: 510.1007/ s00425-00016-02623-00422
[31] Leple´ JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefe`bvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnera S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell. 2007; 19:3669–3691.
[32] Giordano A, Liu Z, Panter SN, Dimech AM, Shang Y, Wijesinghe H, Fulgueras K, Ran Y, Mouradov A, Rochfort S. Reduced lignin content and altered lignin composition in the warm seasonforage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA Reductase Gene. Transgenic Res. 2014;23:503–517.
[33] Kim Y, Kim CY, Song W, Park D, Kwon S, Lee H, Bang J, Kwak S. Overexpression of sweetpotatoswpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance intobacco. Planta. 2008; 227: 867–881.
[34] Blee KA, Choi JW, O’Connell AP, Schuch W, Lewis NG, Bolwell GP. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry. 2003; 64: 163–176.
[35] Wang GL, Huang Y, Zhang XY, Xu ZS, Wang F, Xiong AS. Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots。 Plant Cell Rep. 2016; 35:1743–1755. DOI 10.1007/s00299-016-1992-0
[36] Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen.Plant Molecular Biology. 2004; 56: 255–270.
[37] Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot. 2006; 97:883–893.
[38] Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S. Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems. Journal of Experimental Botany. 2011; 62(15):5463–5469. https://doi.org/10.1093/jxb/err224.
[39] Herrero J, Carrasco AE, Zapata JM. Arabidopsis thaliana peroxidases involved in lignin biosynthesis: in silico promoter analysis and hormonal regulation. Plant Physiology and Biochemistry. 2014; 80: 192-202.
[40] Steinwand BJ, Xu S, Polko JK, Doctor SM, Westafer M, Kieber JJ. Alterations in auxin homeostasissuppress defects in cell wall function. PLoS ONE. 2014; 9:e98193
[41] Singh V, Sergeeva L, Ligterink W, Aloni R, Zemach H, Doron- Faigenboim A, Yang J, Zhang P, Shabtai S, Firon N. Gibberellin Promotes Sweetpotato Root Vascular Lignification and Reduces Storage-Root Formation. Front. Plant Sci. 2019; 10:1320. doi: 10.3389/fpls.2019.01320
[42] Ma R, Xiao Y, Lv Z, Tan H, Chen R, Li Q, Chen J, Wang Y, Yin J, Zhang L, Chen W. AP2/ERF transcription factor, Ii049, positively regulates lignan biosynthesis in isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes. Front. Plant Sci. 2017; 8:1361. doi: 10.3389/fpls.2017.01361
[43] Guo W, Jin L, Miao Y, He X, Hu Q, Guo K, Zhu L, Zhang X. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. Plant Mol Biol. 2016.DOI 10.1007/s11103-016-0467-6
[44] Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytologist. 2012; 196: 427–440.doi: 10.1111/j.1469-8137.2012.04277.x
[45] Villordon AQ, LaBonte DR, Firon N, Kfir Y, Pressman E, Schwartz. Characterization of adventitious root development in sweetpotato. Hort Science. 2009; 44: 651–655.
[46] Luo Y, Ding N, Shi X, Wu Y, Wang R, Pei L, Xu R, Cheng S, Lian Y, Gao J, Wang A, Cao Q, Tang J. Generation and comparative analysis of full-length transcriptomes in sweetpotato and its putative wild ancestor I. trifida. bioRxiv. 2017, doi: https://doi.org/10.1101/112425
[47] Li B. Dewey CNJBb: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
[48] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:106.
[49] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9:559. doi:10.1186/1471-2105-9-559
[50] Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001; 411: 41–42.
[51] Qin Z, Hou F, Li A, Dong S, Huang C, Wang Q, Zhang L. Comparative analysis of full-length transcriptomes based on hybrid population reveals regulatory mechanisms of anthocyanin biosynthesis in sweet potato (Ipomoea batatas (L.) Lam). BMC Plant Biology. 2020; 20:299. https://doi.org/10.1186/s12870-020-02513-1
[52] Dobrev PI, Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Plant salt tolerance: methods and protocols. 2012; 251–261.
[53] Djilianov DL, Dobrev PI, Moyankova DP, Vankova R, Georgieva DT, Gajdošová S, Motyka V. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. Journal of Plant Growth Regulation. 2013; 32: 564. https://doi.org/10.1007/s00344-013-9323-y.
[54] Van-Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology for Biofuels. 2013; 6: 46. https://doi.org/10.1186/1754‐6834‐6‐46