[1] Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020;2(3).
[2] Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature Medicine. 2020;26(4):450–2.
[3] Han GZ. Pangolins Harbor SARS-CoV-2-Related Coronaviruses. Trends in Microbiology [Internet]. 2020;28(7):515–7. Available from: https://doi.org/10.1016/j.tim.2020.04.001
[4] Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368(6494):1016–20.
[5] Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020;579(7798):270–3. Available from: http://dx.doi.org/10.1038/s41586-020-2012-7
[6] Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.
[7] Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8.
[8] Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell [Internet]. 2020;181(2):281-292.e6. Available from: http://dx.doi.org/10.1016/j.cell.2020.02.058
[9] Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research [Internet]. 2015;202:120–34. Available from: http://dx.doi.org/10.1016/j.virusres.2014.11.021
[10] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8.
[11] Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research. 2020;1456–74.
[12] Guo J, Huang Z, Lin L, Lv J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of the American Heart Association. 2020;9(7):e016219.
[13] Yan R, Zhang Y, Li Y, Xia L, Zhou Q. Structure of dimeric full-length human ACE2 in complex with B 0 AT1. 2020;
[14] Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Frontiers in Cellular and Infection Microbiology. 2020;10(June):1–9.
[15] Vaibhav B. Patel, Jiu-Chang Zhong, Maria B. Grant and GYO. Role of the ACE2/Angiotensin 1–7 axis of the Renin-Angiotensin System in Heart Failure. Circulation Research. 2016;118(8): 13.
[16] Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology. 2020;94(7).
[17] Park Y, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019 F abio. 2019;47(April):636–41.
[18] Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. 2014;42(April):320–4.
[19] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018;35(6):1547–9.
[20] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL : homology modelling of protein structures and complexes. 2018;(May):1–8.
[21] Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, et al. VADAR : a web server for quantitative evaluation of protein structure quality. 2003;31(13):3316–9.
[22] The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
[23] Zundert GCP Van, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. SC. Journal of Molecular Biology [Internet]. 2015; Available from: http://dx.doi.org/10.1016/j.jmb.2015.09.014
[24] Xue LC, Rodrigues JP, Kastritis PL, Mjj A. Structural bioinformatics PRODIGY : a web server for predicting the binding affinity of protein-protein complexes. 2016;(2011):2014–6.
[25] Meath WJ, Margoliash DJ, Jhanwar BL, Koide A, Zeiss GD. Interaction Models for Water in Relation to Protein Hydratation. Nature. 1981;(May):331–8.
[26] Oostenbrink C, Soares TA, Van Der Vegt NFA, Van Gunsteren WF. Validation of the 53A6 GROMOS force field. European Biophysics Journal. 2005;34(4):273–84.
[27] Mykytyn AAZ, Lamers MM, Okba NMA, Breugem TI, Doel PB Van Den, Run P Van, et al. Susceptibility of rabbits to SARS-CoV-2 Affiliations : 2020;1–17.