Participants
A total of 93 patients with PE scheduled for the Nuss surgery were invited to participate between August 2017 to July 2018. The inclusion criteria were as follows: age 13–45 years, non-employed, Haller index [8] ≥3.0, no known psychiatric or medical illness, and no use of psychoactive, soporific, or illegal drugs. The exclusion criteria were as follows: age <13 or >45 years; Haller index <3.0; having major medical diseases, known psychiatric disease, or known sleep-disordered breathing, combined with other musculoskeletal diseases, and having undergone another major surgery within the past 6 months. After excluding patients who did not complete questionnaires, had an error while obtaining HRV measurements, and refused to participate in the study, a total of 43 participants were included. After Nuss surgery, 19 of 43 patients were followed up at another medical center, and 4 of 43 patients were lost to follow-up due to the study being conducted overseas. The final 20 patients completed the same measurements 6 months after the Nuss surgery.
Additionally, another 15 non-employed, healthy participants were eligible for comparison and recruited from the families of patients with PE or from among our medical staff and their families; they fulfilled the same inclusion criteria but had no PE. All healthy participants, except for one, completed all measurements at baseline. For the final analysis, 14 healthy participants were included in the control group.
Anthropometric measurements and demographic data
Baseline clinical characteristics, including age, sex, body height, body weight (BW), body mass index (BMI), and smoking status were recorded.
Physiological and psychological function measurements
The evaluation questionnaires included the visual analog scale for pain (VAS), the Chinese version of the five-item Brief Symptom Rating Scale (BSRS-5) [9], the validated Chinese version of the Beck Depression Inventory-II (BDI-II) [10], and the validated Chinese version of the Pittsburgh Sleep Quality Index (PSQI) questionnaires [11].
The VAS rated the severity of painful bodily sensations, ranging from 0 (no pain) to 10 (extremely severe pain).The BSRS-5 is a five-item questionnaire that measures anxiety (tense or high-strung), depression (depressed or in a low mood), hostility (easily annoyed or irritated), interpersonal sensitivity (feeling inferior to other people), and additional symptoms (having trouble falling asleep in the past 1 week). Each item score ranges from 0 to 4 (0 = not at all; 1, a little bit, 2 = moderately; 3, quite a bit; 4, extremely).
The BDI-II® questionnaire measures the severity of subjective depression in adolescents and adults. It contains 21 items, and each item is scored from 0 to 3 (0 = do not feel so; 1 = feel so; 2 = feel so all the time and cannot snap out of it; 3, feel so that cannot stand it). The sum of the 21 items (BDI-II score) indicates the severity of depressive symptoms (higher BDI-II score, more severe depressive symptoms).
The PSQI questionnaire assesses subjective sleep quality, containing seven components: sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, frequency of sleeping medication use, and daytime functional impairment. Each PSQI component was rated from 0 to 3 (0 = no difficulty; 3 = extreme difficulty). The sum of these seven components (PSQI score) represents the global subjective sleep quality (good and poor sleep quality corresponding to a PSQI score ≤5 and ≥6, respectively).
Evaluation of ANS regulation in response to postural change
HRV was evaluated using the 5-minute short-term recording by the HRV analysis software [CheckMyHeart (CMH), Taiwan] Version 3.0. The CMH system included a single-lead electrocardiography (ECG) recorder (lead I or lead II). Beat-by-beat RR interval values (resolution 4 ms) were obtained from the ECG signals from the CMH software, which automatically rejected and allowed manual filtering of irregular RR intervals. The detrended time series were cubically interpolated and resampled at 1 Hz. After detrending via least-squares second-order polynomial fitting, the power spectral density of the RR interval time series was estimated by discrete Fourier transform, which was performed using an autoregressive method (Burg algorithm) with spectral decomposition (Johnsen and Andersen algorithm). Powers in the very-low-frequency (VLF, 0.00–0.04 Hz), low-frequency (LF, 0.04–0.15 Hz), and high-frequency (HF, 0.15–0.40 Hz) bands were obtained by numerical integration. Components showing <10% of the overall power in the band were ignored, as they might represent noise contributions. The spectral powers of the VLF, LF, and HF bands were computed as the sum of the respective spectral components. Frequency domain methods were used, and the LF and HF were expressed in normalized units (n.u.) to minimize the effect on the values of LF and HF components of the changes in total power, calculated as follows: (absolute power of the components)/(total − VLF power) ×100. The physiological correlations of VLF are still unclear; therefore, we did not collect VLF values. As the short-term HRV measurements rapidly returned to baseline after transient or mild perturbations, such as milder activity and postural change, we obtained HRV measurements while the participants were in the supine posture and immediately upon sitting up. The LFn.u., HFn.u., and LF/HF ratios were recorded in these two postures. Usually, the LFn.u. represents sympathetic activity, and the HFn.u. represents parasympathetic activity; the LF/HF ratio indicates the overall ANS regulation [1].
Statistical methods
All continuous variables were non-normally distributed and presented as medians and interquartile ranges (Q1, Q3). Categorical variables were shown as numbers and percentages (%). For comparison between the study and control groups at baseline, the Mann-Whitney U test was used for analyzing continuous variables. The Pearson's chi-square was used to analyze categorical variables.. For comparison before and after Nuss surgery among the study group, the Wilcoxon signed ranks test was used to analyze continuous variables, and the McNemar’s test was used to analyze categorical variables. All statistical assessments were two-tailed and considered significant at p<0.05. All statistical analyses were performed using IBM SPSS statistical software version 24 for Windows (IBM Corp., Armonk, New York, USA).