1. Hoffman, J. I. E. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol.39, 1890-1900 (2002).
2. Benitz, W. E. Patent ductus arteriosus in preterm infants. Pediatrics137, e20153730 (2016).
3. Sellmer, A. et al. Morbidity and mortality in preterm neonates with patent ductus arteriosus on day 3. Arch. Dis. Child. Fetal. Neonatal. Ed.98, F505-F510 (2013).
4. Weisz, D. E. & McNamara, P. J. Patent ductus arteriosus ligation and adverse outcomes: causality or bias? J. Clin. Neonatol.3, 67-75 (2014).
5. Bose, C. L. & Laughon, M. M. Patent ductus arteriosus: lack of evidence for common treatments. Arch. Dis. Child. Fetal. Neonatal. Ed.92, F498-F502 (2007).
6. Sung, S. I., Lee, M. H., Ahn, S. Y., Chang, Y. S. & Park, W. S. Effect of nonintervention vs oral ibuprofen in patent ductus arteriosus in preterm infants: a randomized clinical trial. JAMA Pediatr.174, 755-763 (2020).
7. Clyman, R. I. et al. PDA-TOLERATE trial: an exploratory randomized controlled trial of treatment of moderate-to-large patent ductus arteriosus at 1 week of age. J. Pediatr.205, 41-48.e6 (2019).
8. Obermeyer, Z. & Emanuel, E. J. Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med.375, 1216 (2016).
9. Krittanawong, C. et al. Future direction for using artificial intelligence to predict and manage hypertension. Curr. Hypertens. Rep.20, 75 (2018).
10. Kalfa, D., Agrawal, S., Goldshtrom, N., LaPar, D. & Bacha, E. Wireless monitoring and artificial intelligence: a bright future in cardiothoracic surgery. J. Thorac. Cardiovasc. Surg.160, 809-812 (2020).
11. Pourarian, S., Farahbakhsh, N., Sharma, D., Cheriki, S. & Bijanzadeh, F. Prevalence and risk factors associated with the patency of ductus arteriosus in premature neonates: a prospective observational study from Iran. J. Matern.-Fetal Neonatal Med.30, 1460-1464 (2017).
12. Lee, J. A., Sohn, J. A., Oh, S. & Choi, B. M. Perinatal risk factors of symptomatic preterm patent ductus arteriosus and secondary ligation. J. Pediatr. Neonatol.61, 439-446 (2020).
13. Wynn, J. L. & Polin, R. A. Progress in the management of neonatal sepsis: the importance of a consensus definition. J. Pediatr. Res.83, 13-15 (2018).
14. Petrasic, K., Saul, B., Greig, J., Bornfreund, M. & Lamberth, K. Algorithms and bias: what lenders need to know. White Case (2017).
15. Barry-Jester, A. M., Casselman, B. & Goldstein, D. in The Marshall Project (2015).
16. Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H. F. & van der Schaar, M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS One14, e0213653 (2019).
17. Safavi, K. C. et al. Development and validation of a machine learning model to aid discharge processes for inpatient surgical care. JAMA Netw. Open2, e1917221 (2019).
18. Im, S. H., Jung, Y. & Kim, S. H. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater.60, 3-22 (2017).
19. Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med.380, 1347-1358 (2019).
20. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Interpretable machine learning: definitions, methods, and applications. arXiv:1901.04592 (2019).
21. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M. & Qureshi, N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One12, e0174944 (2017).
22. Chang, Y. S., Park, H. Y. & Park, W. S. The Korean neonatal network: an overview. J. Korean Med. Sci.30, S3-S11 (2015).
23. Singh, R. & Mangat, N. S. Elements of Survey Sampling (Springer Science & Business Media, 2013).
24. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res.16, 321-357 (2002).
25. Cortes, C. & Mohri, M. Confidence intervals for the area under the ROC curve. Adv. Neural Inf. Process. Syst.17, 305-312 (2005).
26. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res.12, 2825-2830 (2011).
27. Lundberg, S. & Lee, S. I. A unified approach to interpreting model predictions. arXiv:1705.07874 (2017).
28. Johnson, S. C. Hierarchical clustering schemes. Psychometrika32, 241-254 (1967).
29. Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One9, e98679 (2014).
30. Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc.58, 236-244 (1963).