Adusumilli, R., and Mallick, P. (2017). Data Conversion with ProteoWizard msConvert. Methods Mol Biol 1550, 339-368.
Aksoy P, E.C., White TA, Thompson M, Soares S, Benech JC, Chini EN. (2006). Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 349, 353-359.
Amici SA, Y.N., Narvaez-Miranda J, Jablonski KA, Arcos J, Rosas L, Papenfuss TL, Torrelles JB, Jarjour WN, Guerau-de-Arellano M (2018). CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions. Front Immunol 9, 1593.
Anderson, R.M., and Weindruch, R. (2012). The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol 24, 101-106.
Bai P, C.C., Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13, 461-468.
Behr A, T.H., Gholson RK. (1981). Apparent pyridine nucleotide synthesis in mitochondria: an artifact of NMN and NAD glycohydrolase activity? Biochem Biophys Res Commun 101, 767-774.
Braidy N, G.G., Mansour H, Chan-Ling T, Poljak A, Grant R. (2011). Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6, e19194.
Brand, M.D. (1997). Regulation Analysis of Energy Metabolism. J Exp Biol 200, 193-202.
C.A. Sims, Y.G., S. Mukherjee, K. Singh, P. Botolin, A. Davila Jr., and J.A. Baur (2018). Nicotinamide Mononucleotide Preserves Mitochondrial Function and Increases Survival in Hemorrhagic Shock. JCI Insight 3, e120182.
Camacho-Pereira, J., Tarrago, M.G., Chini, C.C.S., Nin, V., Escande, C., Warner, G.M., Puranik, A.S., Schoon, R.A., Galina, A., and Chini, E.N. (2016). CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab 23, 1127–1139.
Chalkiadaki, A., and Guarente, L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 8, 287-296.
Chen D, B.J., Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L. (2008). Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 22, 1753-1757.
Chen, D., Steele, A.D., Lindquist, S., and Guarente, L. (2005). Increase in activity during calorie restriction requires Sirt1. Science 310, 1641.
Chini C, H.K., Warner GM, Tarragó MG, Peclat TR, Tchkonia T, Kirkland JL, Chini E. (2019). The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem Biophys Res Commun 513, 486-493.
Chini, C., Tarrago, M. & Chini, E. (2017). NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol 445, 62-74.
Clement J, W.M., Poljak A, Sachdev P, Braidy N (2019). The Plasma NAD+ Metabolome Is Dysregulated in "Normal" Aging. Rejuvenation Res 22, 121-130.
Crook M, M.M., Wang W, Hanna-Rose W. (2014). An NAD(+) biosynthetic pathway enzyme functions cell non-autonomously in C. elegans development. Dev Dyn 243, 965-976.
Davila A, L.L., Chellappa K, Redpath P, Nakamaru-Ogiso E, Paolella LM, Zhang Z, Migaud ME, Rabinowitz JD, Baur JA. (2018). Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. Elife pii: e33246.
Dietrich LS, M.O., Powanda M. (1968). NAD synthesis in animal tissues. J Vitaminol (Kyoto) 14, 123-129.
E.F. Fang, M.S.-K., L.E. Brace, H. Kassahun, T. SenGupta, H. Nilsen, J.R. Mitchell, D.L. Croteau and V.A. Bohr (2014). Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction. Cell 157, 882-896.
Ear PH, C.A., Gumusoglu SB, Schmidt MS, Vogeler S, Malicoat J, Kadel J, Moore MM, Migaud ME, Stevens HE, Brenner C. (2019). Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring. Cell Rep 26, 969-983.
Frederick, D.W., Davis, J.G., , Dávila, A.J., Agarwal, B., Michan, S., Puchowicz, M.A., Nakamaru-Ogiso‖, E. and J. A. Baur (2015). Increasing NAD Synthesis in Muscle via Nicotinamide Phosphoribosyltransferase Is Not Sufficient to Promote Oxidative Metabolism. JBC 290,, 1546-1558.
Frederick DW, L.E., Liu L, Davila A Jr, Chellappa K, Silverman IM, Quinn WJ 3rd, Gosai SJ, Tichy ED, Davis JG, Mourkioti F, Gregory BD, Dellinger RW, Redpath P, Migaud ME, Nakamaru-Ogiso E, Rabinowitz JD, Khurana TS, Baur JA. (2016). Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab 24, 269-282.
Gardell SJ, H.M., Khan A, Dispagna M, Hampton Sessions E, Falter R, Kapoor N, Brooks J, Culver J, Petucci C, Ma CT, Cohen SE, Tanaka J, Burgos ES, Hirschi JS, Smith SR, Sergienko E, Pinkerton AB. (2019). Boosting NAD+ with a small molecule that activates NAMPT. Nat Commun 10, 3241.
Gomes, A.P., Price, N. L., Ling, A. J. Y., Moslehi, J. J., Montgomery, M. K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., Mercken, E.M., Palmeria, C.M., deCabo, R., Rolo, A.P., Turner, N., Bell, E.L., and Sinclair, D. A. (2013). Declining NAD+ induces a pseudohypoxic state disrupting nuclear103 mitochondrial communication during aging. Cell 155, 1624-1638.
Guan Y, W.S., Huang XZ, Xie QH, Xu YY, Shang D, Hao CM (2017). Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J Am Soc Nephrol 28, 2337-2352.
J. Song, S.K., C. Zhou, S. Zhang, Y. Guan, T. Xu, C. Sheng, P. Wang, C. Miao (2014). Nicotinamide Phosphoribosyltransferase Is Required for the Calorie Restriction-Mediated Improvements in Oxidative Stress, Mitochondrial Biogenesis, and Metabolic Adaptation. J Gerontol A Biol Sci Med Sci 69, 44-57.
Kang BN, T.K., Deshpande DA, Amrani Y, Panettieri RA, Walseth TF, Kannan MS (2006). Transcriptional regulation of CD38 expression by tumor necrosis factor-alpha in human airway smooth muscle cells: role of NF-kappaB and sensitivity to glucocorticoids. FASEB J 20, 1000-1002.
Lane, A.N.a.F., T. W.-M. (2015). Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43, 2466–2485.
Liu L, S.X., Quinn WJ, Hui S, Krukenberg K, Frederick DW, Redpath P, Zhan L, Chellappa K, White E, Migaud M, Mitchison TJ, Baur JA, Rabinowitz JD. (2018). Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab 27, 1067-1080.e1065.
Lu W, W.L., Chen L, Hui S, Rabinowitz JD (2018). Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Antioxid Redox Signal 28, 167-179.
M. Fulco, Y.C., P. Zhao, E.P. Hoffman, M.W. McBurney, A. A .Sauve, V. Sartorelli (2008). Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 Through AMPK-mediated Regulation of Nampt. Dev Cell 14, 661-673.
Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., and Guillemin, G.J. (2012). Age-Associated Changes In Oxidative Stress and NAD+ Metabolism In Human Tissue. PLoS ONE 7.
Matalonga J, G.E., Bresque M, Escande C, Carbó JM, Kiefer K, Vicente R, León TE, Beceiro S, Pascual-García M, Serret J, Sanjurjo L, Morón-Ros S, Riera A, Paytubi S, Juarez A, Sotillo F, Lindbom L, Caelles C, Sarrias MR, Sancho J, Castrillo A, Chini EN, Valledor AF (2017). The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism. Cell Rep 18, 1241-1255.
Mattison, J.A., Colman, R.J., Beasley, T.M., Allison, D.B., Kemnitz, J.W., Roth, G.S., Ingram, D.K., Weindruch, R., de Cabo, R., and Anderson, R.M. (2017). Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8, 14063.
McReynolds MR, C.K., Baur JA. (2020). Age-related NAD+ decline. Exp Gerontol 134, 110888.
McReynolds MR, W.W., Holleran LM, Hanna-Rose W (2017). Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid. J Biol Chem 292, 11147-11153.
Mills, K.F., Yoshida, S., Stein, L.R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Miguad, M.S., Apte, R.S., Uchida, K., Yoshino, J., and Imai, S.I. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metabolism 24, 795–806.
Minhas PS, L.L., Moon PK, Joshi AU, Dove C, Mhatre S, Contrepois K, Wang Q, Lee BA, Coronado M, Bernstein D, Snyder MP, Migaud M, Majeti R, Mochly-Rosen D, Rabinowitz JD, Andreasson KI (2019). Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat Immunol 20, 50-63.
Mouchiroud, L., Houtkooper, R. H., & Auwerx, J. (2013). NAD+ metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Bio 48, 397–408.
MR Antoniewicz, J.K., G Stephanopoulos (2006). Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 4, 324-337.
Musso T, D.S., Franco L, Calosso L, Badolato R, Garbarino G, Dianzani U, Malavasi F (2001). CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines. J Leukoc Biol 69, 605-612.
Pittelli M, F.L., Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G, Moroni F, Chiarugi A. (2010). Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 285, 34106-34114.
Pollak, N., Dölle, C. and Ziegler, M. (2007). The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem J 402, 205–218.
Revollo JR, K.A., Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S. (2007). Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6, 363-375.
Salvatori, I., Valle, C., Ferri, A., and Carri, M.T. (2017). SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochemistry International 109, 184-192.
Sauve AA, M.C., Lee HC, Schramm VL. (1998). The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37, 13239-13249.
Sauve AA, S.V. (2003). Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42, 9249-9256.
Scheibye-Knudsen M, M.S., Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM, Mangerich A, Wilson MA, Mattson MP, Bergersen LH, Cogger VC, Warren A, Le Couteur DG, Moaddel R, Wilson DM, Croteau DL, de Cabo R, Bohr VA. (2014). A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20, 840-855.
Shibata, K. (2018). Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J Nutr Sci Vitaminol (Tokyo) 64, 90-98.
Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812.
Song J, K.S., Zhou CC, Zhang SL, Guan YF, Xu TY, Sheng CQ, Wang P, Miao CY. (2014). Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. J Gerontol A Biol Sci Med Sci 69, 44-57.
Spindler, S.R. (2010). Caloric Restriction: From Soup to Nuts. Ageing Res Rev 9, 324-353.
SR, S. (2010). Caloric restriction: from soup to nuts. Ageing Res Rev 9, 324-353.
Srivastava, S. (2016). Emerging therapeutic roles for NAD+ metabolism in mitochondrial and age-related disorders. Clin Trans Med 5, 25.
Stein LR, I.S. (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J 33, 1321-1340.
Su, X., Lu, W., Rabinowitz, J. D. (2017). Metabolite spectral accuracy on orbitraps. Anal Chem 89, 5940-5948.
Tarragó MG, C.C., Kanamori KS, Warner GM, Caride A, de Oliveira GC, Rud M, Samani A, Hein KZ, Huang R, Jurk D, Cho DS, Boslett JJ, Miller JD, Zweier JL, Passos JF, Doles JD, Becherer DJ, Chini EN (2018). A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab 27, 1081-1095.
Ubaida-Mohien C, L.A., Gonzalez-Freire M, Tharakan R, Shardell M, Moaddel R, Semba RD, Chia CW, Gorospe M, Sen R, Ferrucci L (2019). Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. Elife e49874.
Verdin, E. (2015). NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208-1213.
Wang, G., Han,T., Nijhawan, D., Theodoropoulos, P., Naidoo, J., Yadavalli, S., Mizaei, H., Pieper, A.A., Ready, J.M., McKnight, S.L. (2014). P7C3 Neuroprotective Chemicals Function by Activating the Rate-limiting Enzyme in NAD Salvage. Cell 158, 1324–1334.
Wang L, X.X., Chen L, Yang L, Su X, Rabitz H, Lu W, Rabinowitz JD (2019). Peak Annotation and Verification Engine for Untargeted LC-MS Metabolomics. Anal Chem 91, 1838-1846.
Wang W, M.M., Goncalves JF, Shu M, Dhondt I, Braeckman BP, Lange SE, Kho K, Detwiler AC, Pacella MJ, Hanna-Rose W. (2015). Comparative Metabolomic Profiling Reveals That Dysregulated Glycolysis Stemming from Lack of Salvage NAD+ Biosynthesis Impairs Reproductive Development in Caenorhabditis elegans. J Biol Chem 290, 26163-26179.
Wu X, H.F., Zeng J, Han L, Qiu D, Wang H, Ge J, Ying X, Wang Q (2019). NMNAT2-mediated NAD+ generation is essential for quality control of aged oocytes. Aging Cell 8, e12955.
X. Wei, R.J., G. Wang, S. Hong, L. Song, B. Sun, K. Chen, N. Wang, Q. Wang, X. Luo, J. Yan (2020). Depot-specific regulation of NAD+/SIRTs metabolism identified in adipose tissue of mice in response to high-fat diet feeding or calorie restriction. The Journal of Nutritional Biochemistry 80, 108377.
Yang H, Y.T., Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA. (2007 ). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107.
Yang, Y., and Sauve, A. A. (2016). NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864, 1787–1800.
Yoshida M, S.A., Lin JB, Mills KF, Sasaki Y, Rensing N, Wong M, Apte RS, Imai SI. (2019). Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metab 30, 329-342.
Yoshino J, B.J., Imai SI (2018). NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 27, 513-528.
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E.R., Lutolf, M.P., Aebersold, R., Schoonjans, K., Menzies, K.J., and Auwerx, J. (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443.
Zhu X, S.W., Wang Y, Jaiswal A, Ju Z, Sheng Q (2017). Nicotinamide adenine dinucleotide replenishment rescues colon degeneration in aged mice. Signal Transduct Target Ther 7, 17017.
Zhu XH, L.M., Lee BY, Ugurbil K, Chen W (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. 112, 2876-2881.