1. Sung H, Ferlay J, Siegel RL, et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249
2. Travis WD, Brambilla E, Burke AP, et al (2015) Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol 10:1240–1242
3. Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3:733–744
4. Yu C-J (2018) Letter from Taiwan. Respirology 23:535–537
5. Ji X, Bossé Y, Landi MT, et al (2018) Identification of susceptibility pathways for the role of chromosome 15q25. 1 in modifying lung cancer risk. Nat Commun 9:1–15
6. Lee PN, Forey BA, Coombs KJ, et al (2016) Time trends in never smokers in the relative frequency of the different histological types of lung cancer, in particular adenocarcinoma. Regul Toxicol Pharmacol 74:12–22
7. Eckel SP, Cockburn M, Shu Y-H, et al (2016) Air pollution affects lung cancer survival. Thorax 71:891–898
8. Gelsomino F, Rossi G, Tiseo M (2014) MET and small-cell lung cancer. Cancers (Basel) 6:2100–2115
9. Yan Y, Su C, Hang M, et al (2017) Recombinant Newcastle disease virus rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells via regulating alpha 7 nicotinic acetylcholine receptors in vitro. Virol J 14:190. https://doi.org/10.1186/s12985-017-0852-z
10. McLean AEB, Barnes DJ, Troy LK (2018) Diagnosing Lung Cancer: The Complexities of Obtaining a Tissue Diagnosis in the Era of Minimally Invasive and Personalised Medicine. J Clin Med 7:. https://doi.org/10.3390/jcm7070163
11. Deveraux QL, Schendel SL, Reed JC (2001) Antiapoptotic proteins. The bcl-2 and inhibitor of apoptosis protein families. Cardiol Clin 19:57–74. https://doi.org/10.1016/s0733-8651(05)70195-8
12. Cheng H, Shcherba M, Pendurti G, et al (2014) Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag 3:67–75
13. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer 2:489–501
14. Tsao AS, McDonnell T, Lam S, et al (2003) Increased phospho-AKT (Ser473) expression in bronchial dysplasia: implications for lung cancer prevention studies. Cancer Epidemiol Prev Biomarkers 12:660–664
15. Balsara BR, Pei J, Mitsuuchi Y, et al (2004) Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis 25:2053–2059. https://doi.org/10.1093/carcin/bgh226
16. Tang J-M, He Q-Y, Guo R-X, Chang X-J (2006) Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 51:181–191. https://doi.org/10.1016/j.lungcan.2005.10.003
17. Scrima M, De Marco C, Fabiani F, et al (2012) Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PLoS One 7:e30427. https://doi.org/10.1371/journal.pone.0030427
18. Papadimitrakopoulou V, Adjei AA (2006) The Akt/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 1:749–751
19. Tripathi SC, Fahrmann JF, Celiktas M, et al (2017) MCAM mediates chemoresistance in small-cell lung cancer via the PI3K/AKT/SOX2 signaling pathway. Cancer Res 77:4414–4425
20. Chometon G, Cappuccini F, Raducanu A, et al (2014) The membrane-targeted alkylphosphocholine erufosine interferes with survival signals from the extracellular matrix. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem Agents) 14:578–591
21. van Blitterswijk WJ, Verheij M (2013) Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta (BBA)-Molecular Cell Biol Lipids 1831:663–674
22. Yosifov DY, Konstantinov SM, Berger MR, Erucylphospho-N N (2009) N-trimethylpropylammonium shows substantial cytotoxicity in multiple myeloma cells. Ann N Y Acad Sci 1171:350
23. Rudner J, Ruiner C-E, Handrick R, et al (2010) The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation. Radiat Oncol 5:1–12
24. Martelli AM, Papa V, Tazzari PL, et al (2010) Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK-and PP2A-dependent mechanisms. Leukemia 24:687–698
25. Kaleagasioglu F, Berger MR (2014) Differential effects of erufosine on proliferation, wound healing and apoptosis in colorectal cancer cell lines. Oncol Rep 31:1407–1416
26. Dineva IK, Zaharieva MM, Konstantinov SM, et al (2012) Erufosine suppresses breast cancer in vitro and in vivo for its activity on PI3K, c-Raf and Akt proteins. J Cancer Res Clin Oncol 138:1909–1917
27. Veenman L, Alten J, Linnemannstöns K, et al (2010) Potential involvement of F 0 F 1-ATP (synth) ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines. Apoptosis 15:753–768
28. Ansari SS, Sharma AK, Soni H, et al (2018) Induction of ER and mitochondrial stress by the alkylphosphocholine erufosine in oral squamous cell carcinoma cells. Cell Death Dis 9:1–15
29. Königs SK, Pallasch CP, Lindner LH, et al (2010) Erufosine, a novel alkylphosphocholine, induces apoptosis in CLL through a caspase-dependent pathway. Leuk Res 34:1064–1069
30. Bade BC, Dela Cruz CS (2020) Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med 41:1–24. https://doi.org/https://doi.org/10.1016/j.ccm.2019.10.001
31. Ng M, Freeman MK, Fleming TD, et al (2014) Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. Jama 311:183–192
32. Subramanian J, Regenbogen T, Nagaraj G, et al (2013) Review of ongoing clinical trials in non-small-cell lung cancer: a status report for 2012 from the ClinicalTrials.gov Web site. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 8:860–865. https://doi.org/10.1097/JTO.0b013e318287c562
33. Semenova E, Böttger F, Song JY, et al (2018) PO-338 Tumour heterogeneity underlies differential cisplatin sensitivity in mouse models of SCLC. ESMO Open 3:A360–A361
34. Sarvi S, Mackinnon AC, Avlonitis N, et al (2014) CD133 + cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res 74:1554–1565
35. Thomas A, Chen Y, Yu T, et al (2015) Trends and Characteristics of Young Non-Small Cell Lung Cancer Patients in the United States. Front Oncol 5:113. https://doi.org/10.3389/fonc.2015.00113
36. Dela Cruz CS, Tanoue LT, Matthay RA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32:605–644. https://doi.org/10.1016/j.ccm.2011.09.001
37. Islam KMM, Jiang X, Anggondowati T, et al (2015) Comorbidity and Survival in Lung Cancer Patients. Cancer Epidemiol biomarkers Prev a Publ Am Assoc Cancer Res cosponsored by Am Soc Prev Oncol 24:1079–1085. https://doi.org/10.1158/1055-9965.EPI-15-0036
38. Sabari JK, Lok BH, Laird JH, et al (2017) Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol 14:549–561
39. Avsar Abdik E, Kaleagasioglu F, Abdik H, et al (2019) ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 30:383–393
40. Fiegl M, Lindner LH, Juergens M, et al (2008) Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs. Cancer Chemother Pharmacol 62:321–329
41. Lemeshko V V, Kugler W (2007) Synergistic inhibition of mitochondrial respiration by anticancer agent erucylphosphohomocholine and cyclosporin A. J Biol Chem 282:37303–37307
42. Kapoor V, Zaharieva MM, Das SN, Berger MR (2012) Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt–mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 319:39–48. https://doi.org/https://doi.org/10.1016/j.canlet.2011.12.032
43. Pervaiz A, Akhtar MS, Mahmood S, et al (2018) Molecular basis of cell cycle arrest induced by erufosine in metastatic breast cancer cells
44. Steelman LS, Navolanic PM, Sokolosky ML, et al (2008) Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 27:4086–4095
45. Sinnberg T, Lasithiotakis K, Niessner H, et al (2009) Inhibition of PI3K-AKT-mTOR Signaling Sensitizes Melanoma Cells to Cisplatin and Temozolomide. J Invest Dermatol 129:1500–1515. https://doi.org/https://doi.org/10.1038/jid.2008.379
46. Matsuoka T, Yashiro M (2014) The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers (Basel) 6:1441–1463. https://doi.org/10.3390/cancers6031441
47. Barrett D, Brown VI, Grupp SA, Teachey DT (2012) Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Pediatr Drugs 14:299–316
48. Li X, Li C, Guo C, et al (2021) PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemoresistance of small cell lung cancer. J Genet Genomics. https://doi.org/https://doi.org/10.1016/j.jgg.2021.04.001
49. Fulda S, Debatin K-M (2013) Caspase activation in cancer therapy. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience
50. Ansari SS, Akgün N, Berger MR (2017) Erufosine increases RhoB expression in oral squamous carcinoma cells independent of its tumor suppressive mode of action - a short report. Cell Oncol 40:89–96. https://doi.org/10.1007/s13402-016-0302-8