1 Burton, A. S., Stern, J. C., Elsila, J. E., Glavin, D. P. & Dworkin, J. P. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459-5472 (2012).
2 Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem. Rev. 120, 4707-4765, (2020).
3 Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of Abiotic Nucleotide Synthesis. Chem. Rev. 120, 4766-4805, (2020).
4 Miller, S. L. & Van Trump, J. E. The Strecker synthesis in the primitive ocean. Origin Life, Proc. ISSOL Meet., 3rd, 135-141 (1981).
5 Kitadai, N. & Maruyama, S. Origins of building blocks of life: A review. Geosci.Front. 9, 1117-1153, (2018).
6 Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Annalen der Chemie 75, 27-45, (1850).
7 Wu, L. F. & Sutherland, J. D. Provisioning the origin and early evolution of life. Emerg. Top. Life Sci. 3, 459-468, (2019).
8 Harrison, S. A. & Lane, N. Life as a guide to prebiotic nucleotide synthesis. Nat. Commun. 9, 5176, (2018).
9 McMurry, J. & Begley, T. The Organic Chemistry of Biological Pathways (Roberts and Company Publishers, 2005).
10 Lazcano, A. & Miller, S. L. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85, 793-798, (1996).
11 Sutherland, J. D. The Origin of Life--Out of the Blue. Angew. Chem. Int. Ed. 55, 104-121, (2016).
12 Lazcano, A. & Miller, S. L. On the origin of metabolic pathways. J. Mol. Evol. 49, 424-431 (1999).
13 Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359-370, (1975).
14 Forterre, P. & Gribaldo, S. The origin of modern terrestrial life. HFSP journal 1, 156-168, (2007).
15 Orgel, L. E. The Implausibility of Metabolic Cycles on the Prebiotic Earth. PLoS Biol 6, e18 (2008).
16 Krishnamurthy, R. Life's Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry? Chem. Eur. J. 24, 16708-16715, (2018).
17 Stubbs, R. T., Yadav, M., Krishnamurthy, R. & Springsteen, G. A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of alpha-ketoacids. Nat. Chem. 12, 1016-1022, (2020).
18 Springsteen, G., Yerabolu, J. R., Nelson, J., Rhea, C. J. & Krishnamurthy, R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 9, 91, (2018).
19 Mahipal Yadav, Sunil Pulletikurti, Jayasudhan Reddy Yerabolu & R, K. Cyanide as a Primordial Reductant enables a Protometabolic Reductive Glyoxylate Pathway. Under revision in Nature Chemistry, doi:10.21203/rs.3.rs-549378/v1 (2021)
20 Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546-549, (2019).
21 Ashe, K. et al. Selective prebiotic synthesis of phosphoroaminonitriles and aminothioamides in neutral water. Commun.Chem. 2, 23, (2019).
22 Osumah, A. & Krishnamurthy, R. Diamidophosphate (DAP) – A Plausible Prebiotic Phosphorylating Reagent with a Chem to BioChem Potential? ChemBioChem n/a, doi:https://doi.org/10.1002/cbic.202100274 (2021).
23 Bucherer, H. T. & Fischbeck, H. Hexahydrodiphenylamine and its Derivatives. J. Prakt. Chem. 140, 69-89 (1934).
24 Ware, E. The chemistry of the hydantoins. Chem. Rev. 46, 403-470 (1950).
25 Zhao, H., Yu, R., Qiao, H. & Liu, C. Study on the Formation of Glycine by Hydantoin and Its Kinetics. ACS Omega 5, 13463-13472, (2020).
26 Maltais, T. R., VanderVelde, D., LaRowe, D. E., Goldman, A. D. & Barge, L. M. Reactivity of Metabolic Intermediates and Cofactor Stability under Model Early Earth Conditions. Orig. Life Evol. Biosph. 50, 35-55, (2020).
27 Yamagata, Y. et al. Prebiotic synthesis of orotic acid parallel to the biosynthetic pathway. Orig. Life Evol. Biosph. 20, 389-399 (1990).
28 A.P. Clay et al. A Plausible Prebiotic One-Pot Synthesis of Orotate and Pyruvate Suggestive of Common Protometabolic Pathways. Submitted to Angew. Chem. Int. Ed. (2021).
29 Basavaiah, D., Sharada, D. S. & Veerendhar, A. Organo-base mediated Cannizzaro reaction. Tetrahedron Lett. 47, 5771-5774, (2006).
30 Peretó, J. Prebiotic chemistry that led to life. Vol. Ch. 5.1 219-223 (CRC Press, 2019).
31 Lauber, N., Flamm, C. & Ruiz-Mirazo, K. “Minimal metabolism”: A key concept to investigate the origins and nature of biological systems. BioEssays n/a, 2100103, doi:https://doi.org/10.1002/bies.202100103 (2021).
32 Hafenbradl, D., Keller, M., Wächtershäuser, G. & Stetter, K. O. Primordial amino acids by reductive amination of α-oxo acids in conjunction with the oxidative formation of pyrite. Tetrahedron Lett. 36, 5179-5182, (1995).
33 Ritson, D. J. A cyanosulfidic origin of the Krebs cycle. Science Advances 7, eabh3981, (2021).
34 Liu Z, W. L.-F., Kufner C, Sasselov DD, Fischer W, Sutherland J. Prebiotic Photoredox Synthesis from Carbon Dioxide and Sulfite. ChemRxiv (2021; This content is a preprint and has not been peer-reviewed.).
35 Cooper, G., Reed, C., Nguyen, D., Carter, M. & Wang, Y. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc. Nat. Acad. Sci. 108, 14015-14020, (2011).
36 Yanagawa, H., Makino, Y., Sato, K., Nishizawa, M. & Egami, F. A novel way for the formation of α-amino acids and their derivatives in an aqueous medium. Adv. Space Res. 3, 69-74, (1983).
37 Collins Bishop, J., Cross, S. D. & Waddell, T. G. prebiotic transamination. Orig. Life Evol. Biosph. 27, 319-324, (1997).
38 Cooper, A. J. L., Ginos, J. Z. & Meister, A. Synthesis and properties of the alpha-keto acids. Chem. Rev. 83, 321-358, (1983).
39 Bachmann, S., Knudsen, K. R. & Jørgensen, K. A. Mimicking enzymatic transaminations: attempts to understand and develop a catalytic asymmetric approach to chiral α-amino acids. Org. Biomol.r Chem. 2, 2044-2049, (2004).
40 Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212-217, (2018).
41 Parker, E. T., Karki, M., Glavin, D. P., Dworkin, J. P. & Krishnamurthy, R. A sensitive quantitative analysis of abiotically synthesized short homopeptides using ultraperformance liquid chromatography and time-of-flight mass spectrometry. J. Chrom. A 1630, 461509, (2020).
42 Ferris, J. P., Joshi, P. C. & Lawless, J. G. Chemical evolution. XXIX. Pyrimidines from hydrogen cyanide. BioSystems 9, 81-86 (1977).
43 Miyakawa, S., Cleaves, H. J. & Miller, S. L. The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced From Frozen Ammonium Cyanide Solutions. Orig. Life Evol. Biosph. 32, 209-218 (2002).
44 Krishnamurthy, R. Giving Rise to Life: Transition from Prebiotic Chemistry to Protobiology. Acc. Chem. Res. 50, 455-459, (2017).