Administration, E.D.P.C.o.C.E. (1995). Catalogue of historical earthquakes in China (23rdcentury BC–1911 AD) (Beijing: Seismological Press).
Administration, E.D.P.C.o.C.E. (1999). Catalogue of Chinese earthquakes in modern times (1912 AD–1990 AD, Ms ≥ 4.7) (Beijing: General Science Press of China).
CENC (2020). The catalogue of earthquakes of China Earthquake Network Center.
CGIAR-CSI (2020). SRTM Data.
Chen, X.Z., Lu, X.J., and Wand, H.M. (2001). B value of the seismically active and quiescent periods and research of seismicty tendency in China's continent.
Christensen, N.I., and Mooney, W.D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth 100, 9761-9788.
Gao, X., Duan, Z.Q., Wang, W.M., and Guo, Z. (2010). Rupture process of the Oct.6,2008 M_s6.6 Damxung earthquake,Tibet,China. Chinese Journal of Geophysics 53, 2083-2090.
Gomberg, J., and Felzer, K. (2008). A model of earthquake triggering probabilities and application to dynamic deformations constrained by ground motion observations. Journal of Geophysical Research: Solid Earth 113.
Gu, G.X. (1983). Catalogue of Chinese earthquakes (Beijing: Science Press).
Gutenberg, B., and Richter, C. (1956). Earthquake magnitude, intensity, energy, and acceleration (Second paper). Bulletin of the Seismological Society of America 46.
Haines, S.S., Klemperer, S.L., Brown, L., Jingru, G., Mechie, J., Meissner, R., Ross, A., and Wenjin, Z. (2003). INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet. Tectonics 22.
Harris, R.A. (1998). Introduction to special section: Stress triggers, stress shadows, and implications. J Geophys Res 103, 347-424.
Jiao, Q.S., Zhang, J.F., and Jiang, W.L. (2015). Geomorphic features and remote sensing research of fault activity along the southeastern piedmont faults of Nyenchen Tonglha Mountains. Seismology and geology 37, 613-626.
Kijko, B.A., and Sellevoll, M.A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bulletin of the Ssmological Society of America 82, 120-134.
King, G.C.P., Stein, R.S., and Lin, J. (1995). Static stress changes and the triggering of earthquakes: G. C. P. King, R. S. Stein & Jian Lin, Bulletin - Seismological Society of America, 84(3), 1994, pp 935–953. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 32, A50-A51.
Liu, F., Yuan, D., Wang, A., and Pang, W. (2015). Comparative analysis on stress triggering of double earthquakes sequence and seismicity in southwest part of Yunnan Province. Earthquake Research in China.
Peng, X.L., and Wang, D.Y. (2013). Tectonic characteristics and activity analysis of the Yarlung Zangbojiang fault zone. Jounal of Yangtze University(Nat Sci Edit) 10, 41-44.
Qiao, X.J., You, X.Z., Yang, S.M., Wang, Q., and Du, R.L. (2009). Study on Dislocation Inversion of Ms6.6 Damxung Earthquake as constrained by InSAR Measurement. Journal of Geodesy and Geodynamics 29, 1-7.
Shan, B., Feng, Y., Liu, C., Xie, Z., and Xiong, X. (2020). Stress triggering among faults rupturing during one earthquake: a case study of the 2016 Mw7.8 Kaikōura Earthquake, New Zealand. Science Bulletin 65, 89-91.
Shi, Y.L., and Cao, J.L. (2008). Effective viscosity of China continental lithosphere. Earth Science Frontiers 15, 0-0.
Stein, R. (2003). Earthquake Conversations. Scientific American 288, 72-79.
Stein, R.S. (1999). The role of stress transfer in earthquake occurrence. Nature 402, 605-609.
Stein, R.S., King, G.C.P., and Lin, J. (1992). Change in Failure Stress on the Southern San Andreas Fault System Caused by the 1992 Magnitude = 7.4 Landers Earthquake. Science 258, 1328-1332.
USGS (2020). Earthquakes.
Verdecchia, A., and Carena, S. (2015). One hundred and fifty years of Coulomb stress history along the California‐Nevada border, USA. Tectonics 34, 213-231.
Wang, C.Y., Lou, H., Lv, Z.Y., Wu, J.P., Chang, L.J., Dai, S.G., You, H.C., Tang, F.T., Zhu, L., and Silver, P. (2008). S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau——Deep environment of lower crustal flow. Science China Earth Sciences 38, 263-274.
Wang, R., Lorenzo-Martín, F., and Roth, F. (2006). PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers & Geosciences 32, 527-541.
Wu, Z.M., Cao, Z.Q., Shen-tu, B.M., and Deng, Q.D. (1992). Active Faults in the Central TIbet (Beijing: Seismological Press).
Xie, Z.J., Lv, Y.J., Fang, Y., and Zhang, Y.L. (2019). Research on the seismic activity of the Beijing-Tianjin-Hebei region. Progress in Geophysics 34, 961-968.
Yang, G., Wu, J., Hu, Q., and Cai, Y. (2019). Effects of static stress triggering of the strongest earthquakes along the Bengco—southeastern Piedmont of Nyainqentanglha mountain fault zone, Tibet. Journal of Seismology 23, 943-950.
Yin, F.L., Han, L.B., Jiang, C.S., and Shi, Y.L. (2018). Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults. Chinese Journal of Geophysics 61, 3185-3197.
Zhao, W., Mechie, J., Brown, L.D., Guo, J., Haines, S., Hearn, T., Klemperer, S.L., Ma, Y.S., Meissner, R., Nelson, K.D., et al. (2001). Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International 145, 486-498.