1. Li H (2017) TRP Channel Classification. Adv Exp Med Biol 976:1-8. https://doi:10.1007/978-94-024-1088-4_1
2. Thapak P, Vaidya B, Joshi HC, Singh JN, Sharma SS (2020) Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 159:105026. https://doi:10.1016/j.phrs.2020.105026
3. Naziroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36 (3):355-366. https://doi:10.1007/s11064-010-0347-4
4. Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A, Zhang XH, Zhang X, Chen Z, Li XM, Beech DJ, Sivaprasadarao A, Luo JH, Jiang LH (2014) TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 5 (11):e1541. https://doi:10.1038/cddis.2014.494
5. Jiang LH, Yang W, Zou J, Beech DJ (2010) TRPM2 channel properties, functions and therapeutic potentials. Expert Opin Ther Targets 14 (9):973-988. https://doi:10.1517/14728222.2010.510135
6. Adhya P, Sharma SS (2019) Redox TRPs in diabetes and diabetic complications: Mechanisms and pharmacological modulation. Pharmacol Res 146:104271. https://doi:10.1016/j.phrs.2019.104271
7. Song K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353 (6306):1393-1398. https://doi:10.1126/science.aaf7537
8. An X, Fu Z, Mai C, Wang W, Wei L, Li D, Li C, Jiang LH (2019) Increasing the TRPM2 Channel Expression in Human Neuroblastoma SH-SY5Y Cells Augments the Susceptibility to ROS-Induced Cell Death. Cells 8 (1). https://doi:10.3390/cells8010028
9. Xu C, Macciardi F, Li PP, Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ (2006) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B (1):36-43. https://doi:10.1002/ajmg.b.30239
10. Akyuva Y, Naziroglu M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10 (1):6449. https://doi:10.1038/s41598-020-63577-5
11. Thapak P, Bishnoi M, Sharma SS (2020) Pharmacological Inhibition of Transient Receptor Potential Melastatin 2 (TRPM2) Channels Attenuates Diabetes-induced Cognitive Deficits in Rats: A Mechanistic Study. Curr Neurovasc Res 17 (3):249-258. https://doi:10.2174/1567202617666200415142211
12. Dietz RM, Cruz-Torres I, Orfila JE, Patsos OP, Shimizu K, Chalmers N, Deng G, Tiemeier E, Quillinan N, Herson PS (2020) Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels. Transl Stroke Res 11 (2):254-266. https://doi:10.1007/s12975-019-00712-z
13. Abuarab N, Munsey TS, Jiang LH, Li J, Sivaprasadarao A (2017) High glucose-induced ROS activates TRPM2 to trigger lysosomal membrane permeabilization and Zn(2+)-mediated mitochondrial fission. Sci Signal 10 (490). https://doi:10.1126/scisignal.aal4161
14. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26 (3):159-178. https://doi:10.1080/10799890600637506
15. Naziroglu M, Ozgul C, Celik O, Cig B, Sozbir E (2011) Aminoethoxydiphenyl borate and flufenamic acid inhibit Ca2+ influx through TRPM2 channels in rat dorsal root ganglion neurons activated by ADP-ribose and rotenone. J Membr Biol 241 (2):69-75. https://doi:10.1007/s00232-011-9363-9
16. Vaidya B, Sharma SS (2020) Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson’s Disease: An Insight Into Role of Pharmacological Interventions. J Frontiers in Cell
Developmental Biology 8:1387. https://doi:10.3389/fcell.2020.584513
17. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biology 12 (3):218. https://doi:10.1186/gb-2011-12-3-218
18. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25 (12):633-639. https://doi:10.1016/j.tips.2004.10.004
19. Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S, Singh BB (2018) TRPM2 Promotes Neurotoxin MPP(+)/MPTP-Induced Cell Death. Mol Neurobiol 55 (1):409-420. https://doi:10.1007/s12035-016-0338-9
20. Naziroglu M, Luckhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res 33 (7):1256-1262. https://doi:10.1007/s11064-007-9577-5
21. Sumoza-Toledo A, Penner R (2011) TRPM2: a multifunctional ion channel for calcium signalling. J Physiol 589 (Pt 7):1515-1525. https://doi:10.1113/jphysiol.2010.201855
22. Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, Kazantsev AG (2007) Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models. Biochem Biophys Res Commun 357 (3):596-602. https://doi:10.1016/j.bbrc.2007.03.163
23. Uppalapati D, Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS (2014) Neuroprotective potential of peroxisome proliferator activated receptor-α agonist in cognitive impairment in Parkinson’s disease: Behavioral, biochemical, and PBPK profile. PPAR Res 2014. https://doi:10.1155/2014/753587
24. Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS (2014) A PPAR-beta/delta agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson's disease. Curr Neurovasc Res 11 (2):114-124. https://doi:10.2174/1567202611666140318114037
25. Kumar P, Kaundal RK, More S, Sharma SS (2009) Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson's disease. Behavioural Brain Research 197 (2):398-403. https://doi:10.1016/j.bbr.2008.10.010
26. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34 (6):1104-1114. https://doi:10.1016/j.pnpbp.2010.06.004
27. Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153 (6):1324-1330. https://doi:10.1038/sj.bjp.0707675
28. Iwashita A, Tojo N, Matsuura S, Yamazaki S, Kamijo K, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S (2004) A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone) , attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia. J Pharmacol Exp Ther 310 (2):425-436. https://doi:10.1124/jpet.104.066944
29. Thapak P, Khare P, Bishnoi M, Sharma SS (2020) Neuroprotective Effect of 2-Aminoethoxydiphenyl Borate (2-APB) in Amyloid beta-Induced Memory Dysfunction: A Mechanistic Study. Cell Mol Neurobiol. https://doi:10.1007/s10571-020-01012-z
30. Monville C, Torres EM, Dunnett SB (2006) Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. Journal of Neuroscience Methods 158 (2):219-223. https://doi:10.1016/j.jneumeth.2006.06.001
31. Jangra A, Datusalia AK, Khandwe S, Sharma SS (2013) Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacol Biochem Behav 114-115:43-51. https://doi:10.1016/j.pbb.2013.10.021
32. Khare P, Datusalia AK, Sharma SS (2017) Parthenolide, an NF-kappaB Inhibitor Ameliorates Diabetes-Induced Behavioural Deficit, Neurotransmitter Imbalance and Neuroinflammation in Type 2 Diabetes Rat Model. Neuromolecular Med 19 (1):101-112. https://doi:10.1007/s12017-016-8434-6
33. Kim BW, Koppula S, Kumar H, Park JY, Kim IW, More SV, Kim IS, Han SD, Kim SK, Yoon SH, Choi DK (2015) alpha-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson's disease. Neuropharmacology 97:46-57. https://doi:10.1016/j.neuropharm.2015.04.037
34. Kaundal RK, Sharma SS (2011) GW1929: A nonthiazolidinedione PPARγ agonist, ameliorates neurological damage in global cerebral ischemic-reperfusion injury through reduction in inflammation and DNA fragmentation. Behav Brain Res 216 (2):606-612. https://doi:10.1016/j.bbr.2010.09.001
35. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95 (2):351-358. https://doi:10.1016/0003-2697(79)90738-3
36. Bulani Y, Sharma SS (2017) Argatroban Attenuates Diabetic Cardiomyopathy in Rats by Reducing Fibrosis, Inflammation, Apoptosis, and Protease-Activated Receptor Expression. Cardiovasc Drugs Ther 31 (3):255-267. https://doi:10.1007/s10557-017-6732-3
37. Negi G, Sharma SS (2015) Inhibition of IkappaB kinase (IKK) protects against peripheral nerve dysfunction of experimental diabetes. Mol Neurobiol 51 (2):591-598. https://doi:10.1007/s12035-014-8784-8
38. Hanganu A, Provost JS, Monchi O (2015) Neuroimaging studies of striatum in cognition part II: Parkinson's disease. Front Syst Neurosci 9:138. https://doi:10.3389/fnsys.2015.00138
39. Resham K, Sharma SS (2019) Pharmacologic Inhibition of Porcupine, Disheveled, and beta-Catenin in Wnt Signaling Pathway Ameliorates Diabetic Peripheral Neuropathy in Rats. J Pain 20 (11):1338-1352. https://doi:10.1016/j.jpain.2019.04.010
40. Kuhn F, Kuhn C, Luckhoff A (2017) Different Principles of ADP-Ribose-Mediated Activation and Opposite Roles of the NUDT9 Homology Domain in the TRPM2 Orthologs of Man and Sea Anemone. Front Physiol 8:879. https://doi:10.3389/fphys.2017.00879
41. Braga R, Kouzmine I, Canteras NS, Da Cunha C (2005) Lesion of the substantia nigra, pars compacta impairs delayed alternation in a Y-maze in rats. Exp Neurol 192 (1):134-141. https://doi:10.1016/j.expneurol.2004.11.006
42. Kulkarni NP, Vaidya B, Narula A, Sharma SS (2021) Neuroprotective Potential of Caffeic Acid Phenethyl Ester (CAPE) in CNS Disorders: Mechanistic and Therapeutic Insights. Curr Neuropharmacol. https://doi:10.2174/1570159x19666210608165509
43. Pallier PN, Drew CJ, Morton AJ (2009) The detection and measurement of locomotor deficits in a transgenic mouse model of Huntington's disease are task- and protocol-dependent: influence of non-motor factors on locomotor function. Brain Res Bull 78 (6):347-355. https://doi:10.1016/j.brainresbull.2008.10.007
44. O'Cearbhaill RE (2018) Using PARP Inhibitors in Advanced Ovarian Cancer. Oncology (Williston Park) 32 (7):339-343
45. Pfeiffer RF (2016) Non-motor symptoms in Parkinson's disease. Parkinsonism & related disorders 22:S119-S122. https://doi:10.1016/j.parkreldis.2015.09.004
46. Kim M, Cho KH, Shin MS, Lee JM, Cho HS, Kim CJ, Shin DH, Yang HJ (2014) Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease. Int J Mol Med 33 (4):870-878. https://doi:10.3892/ijmm.2014.1656
47. Inaba H, Tsukagoshi A, Kida S (2015) PARP-1 activity is required for the reconsolidation and extinction of contextual fear memory. Mol Brain 8 (1):63. https://doi:10.1186/s13041-015-0153-7
48. Katerji M, Filippova M, Duerksen-Hughes P (2019) Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxid Med Cell Longev 2019:1279250. https://doi:10.1155/2019/1279250
49. Yang W, Chen YH, Liu H, Qu HD (2015) Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model. Int J Mol Med 36 (5):1369-1376. https://doi:10.3892/ijmm.2015.2356
50. Yildizhan K, Naziroglu M (2020) Glutathione Depletion and Parkinsonian Neurotoxin MPP(+)-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol Neurobiol 57 (8):3508-3525. https://doi:10.1007/s12035-020-01974-7
51. Johnson ME, Salvatore MF, Maiolo SA, Bobrovskaya L (2018) Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson's progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol 165-167:1-25. https://doi:10.1016/j.pneurobio.2018.01.002
52. Nagatsu T, Nakashima A, Ichinose H, Kobayashi K (2019) Human tyrosine hydroxylase in Parkinson's disease and in related disorders. J Neural Transm (Vienna) 126 (4):397-409. https://doi:10.1007/s00702-018-1903-3
53. Ratnam M, Chan J, Lesani N, Sidorova-Darmos E, Eubanks JH, Aarts MM (2018) mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 69:23-31. https://doi:10.1016/j.ijdevneu.2018.05.008
54. Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95 (3):715-723. https://doi:10.1111/j.1471-4159.2005.03396.x
55. Thapak P, Bishnoi M, Sharma SS (2020) Amelioration of diabetes-induced cognitive impairment by Transient Receptor Potential Vanilloid 2 (TRPV2) channel inhibitor: Behavioral and mechanistic study. Neurochem Int 139:104783. https://doi:10.1016/j.neuint.2020.104783
56. Colton CK, Zhu MX (2007) 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb Exp Pharmacol (179):173-187. https://doi:10.1007/978-3-540-34891-7_10
57. Negi G, Kumar A, Sharma SS (2010) Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem Biophys Res Commun 391 (1):102-106. https://doi:10.1016/j.bbrc.2009.11.010
58. Djillani A, Nüße O, Dellis O (2014) Characterization of novel store-operated calcium entry effectors. Biochim Biophys Acta 1843 (10):2341-2347. https://doi:10.1016/j.bbamcr.2014.03.012