The human malaria parasite, Plasmodium falciparum possess a unique gliding machinery referred as glideosome that powers its entry into the insect and vertebrate hosts. A number of parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with glideosome motor complex in the inner membrane complex of the merozoite. Furthermore, using experimental genetics approach we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5 and a previously uncharacterised protein - referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade the host RBCs. Additionally, the down regulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites revealed abrogation of reorientation/gliding, however initial attachment with host RBCs was not affected in these parasites. Together, the data presented here shows that proteins of the PhIL1 associated complex plays an important role in orientation of P. falciparum merozoites following initial attachment, which is crucial for formation of tight junction and hence invasion of host erythrocytes. The identification and characterization of PhIL1 associated complex opens new avenues for future anti-malarial drug development.