1 Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17, 181-192, doi:10.1038/s41579-018-0118-9 (2019).
2 Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol 25, 35-48, doi:10.1016/j.tim.2016.09.001 (2017).
3 Smith, I. & Wang, L. F. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol 3, 84-91, doi:10.1016/j.coviro.2012.11.006 (2013).
4 Chinese, S. M. E. C. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666-1669, doi:10.1126/science.1092002 (2004).
5 Gao, H., Yao, H., Yang, S. & Li, L. From SARS to MERS: evidence and speculation. Front Med, doi:10.1007/s11684-016-0466-7 (2016).
6 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814-1820, doi:10.1056/NEJMoa1211721 (2012).
7 Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun 11, 4235, doi:10.1038/s41467-020-17687-3 (2020).
8 Yang, L. et al. MERS-related betacoronavirus in Vespertilio superans bats, China. Emerg Infect Dis 20, 1260-1262, doi:10.3201/eid2007.140318 (2014).
9 Yang, L. et al. Novel SARS-like betacoronaviruses in bats, China, 2011. Emerg Infect Dis 19, 989-991, doi:10.3201/eid1906.121648 (2013).
10 Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535-538, doi:10.1038/nature12711 (2013).
11 Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676-679, doi:10.1126/science.1118391 (2005).
12 Han, Y. et al. Identification of Diverse Bat Alphacoronaviruses and Betacoronaviruses in China Provides New Insights Into the Evolution and Origin of Coronavirus-Related Diseases. Front Microbiol 10, 1900, doi:10.3389/fmicb.2019.01900 (2019).
13 Woo, P. C. et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol 81, 1574-1585, doi:10.1128/JVI.02182-06 (2007).
14 Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol 18, 461-471, doi:10.1038/s41579-020-0394-z (2020).
15 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
16 Zhou, H. et al. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol 30, 2196-2203 e2193, doi:10.1016/j.cub.2020.05.023 (2020).
17 Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun 12, 972, doi:10.1038/s41467-021-21240-1 (2021).
18 Murakami, S. et al. Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan. Emerg Infect Dis 26, 3025-3029, doi:10.3201/eid2612.203386 (2020).
19 Hul, V. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv, 2021.2001.2026.428212, doi:10.1101/2021.01.26.428212 (2021).
20 Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. bioRxiv, 2021.2003.2008.434390, doi:10.1101/2021.03.08.434390 (2021).
21 Lam, T. T. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature, doi:10.1038/s41586-020-2169-0 (2020).
22 Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286-289, doi:10.1038/s41586-020-2313-x (2020).
23 Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol, doi:10.1038/s41564-020-0771-4 (2020).
24 Wu, Z. et al. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. Microbiome 9, 18, doi:10.1186/s40168-020-00965-z (2021).
25 Wu, Z. et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6, 178, doi:10.1186/s40168-018-0554-9 (2018).
26 Wu, Z. et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10, 609-620, doi:10.1038/ismej.2015.138 (2016).
27 Chen, L., Liu, B., Wu, Z., Jin, Q. & Yang, J. DRodVir: A resource for exploring the virome diversity in rodents. J Genet Genomics 44, 259-264, doi:10.1016/j.jgg.2017.04.004 (2017).
28 Chen, L., Liu, B., Yang, J. & Jin, Q. DBatVir: the database of bat-associated viruses. Database (Oxford) 2014, bau021, doi:10.1093/database/bau021 (2014).
29 120 (World Health Organization, 2021).
30 Li, L.-l. et al. A novel SARS-CoV-2 related virus with complex recombination isolated from bats in Yunnan province, China. bioRxiv, 2021.2003.2017.435823, doi:10.1101/2021.03.17.435823 (2021).
31 Hu, D. et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 7, 154, doi:10.1038/s41426-018-0155-5 (2018).
32 Zhao, X. et al. Broad and differential animal ACE2 receptor usage by SARS-CoV-2. J Virol, doi:10.1128/JVI.00940-20 (2020).
33 Li, P. et al. The Rhinolophus affinis bat ACE2 and multiple animal orthologs are functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. Sci Bull (Beijing), doi:10.1016/j.scib.2021.01.011 (2021).
34 Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562-569, doi:10.1038/s41564-020-0688-y (2020).
35 Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221-224, doi:10.1038/s41586-020-2179-y (2020).
36 Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19, 531-545, doi:10.1128/CMR.00017-06 (2006).
37 Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575-576, doi:10.1038/438575a (2005).
38 Drexler, J. F. et al. Bats host major mammalian paramyxoviruses. Nat Commun 3, 796, doi:10.1038/ncomms1796 (2012).
39 Halpin, K. et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 85, 946-951, doi:10.4269/ajtmh.2011.10-0567 (2011).
40 Frutos, R., Serra-Cobo, J., Pinault, L., Lopez Roig, M. & Devaux, C. A. Emergence of Bat-Related Betacoronaviruses: Hazard and Risks. Front Microbiol 12, 591535, doi:10.3389/fmicb.2021.591535 (2021).
41 Latif, A. A. & Mukaratirwa, S. Zoonotic origins and animal hosts of coronaviruses causing human disease pandemics: A review. Onderstepoort J Vet Res 87, e1-e9, doi:10.4102/ojvr.v87i1.1895 (2020).
42 Ye, Z. W. et al. Zoonotic origins of human coronaviruses. Int J Biol Sci 16, 1686-1697, doi:10.7150/ijbs.45472 (2020).
43 Woo, P. C. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180-187, doi:10.1016/j.virol.2006.02.041 (2006).
44 Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J Virol 80, 7481-7490, doi:10.1128/JVI.00697-06 (2006).
45 Liang, J., He, X., Peng, X., Xie, H. & Zhang, L. First record of existence of Rhinolophus malayanus (Chiroptera, Rhinolophidae) in China. Mammalia 84, 362-365, doi:10.1515/mammalia-2019-0062 (2020).
46 Wu, L. et al. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov 6, 68, doi:10.1038/s41421-020-00210-9 (2020).
47 Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276-278, doi:10.1126/science.1087139 (2003).
48 Wu, Z. et al. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol 86, 10999-11012, doi:10.1128/JVI.01394-12 (2012).
49 Yang, J. et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol 49, 3463-3469, doi:10.1128/JCM.00273-11 (2011).
50 Huson, D. H. et al. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput Biol 12, e1004957, doi:10.1371/journal.pcbi.1004957 (2016).
51 Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis 16, 1217-1223, doi:10.3201/eid1608.100208 (2010).
52 Du, J. et al. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats. Sci China Life Sci 59, 604-614, doi:10.1007/s11427-016-5039-0 (2016).
53 Vlasova, A. N. et al. Novel Canine Coronavirus Isolated from a Hospitalized Pneumonia Patient, East Malaysia. Clin Infect Dis, doi:10.1093/cid/ciab456 (2021).
54 Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870-1874, doi:10.1093/molbev/msw054 (2016).
55 Chen, C. et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant 13, 1194-1202, doi:10.1016/j.molp.2020.06.009 (2020).