Acosta-Maeda, Scott TE, Sharma ERD, Misra SK, Anupam K(2013). The pressures and temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite. Am Min 98:859-869.
Badjukov DD, Brandstätter F, Kurat G, Libowitzky E, Raitala J (2005). Ringwoodite-Olivine Assemblages in Dhofar 922 L6 Melt Veins. 36th Annual Lunar and Planetary Science Conference (abstract).
Beck P, Gillet P, El Goresy A, Mostefaoui S (2005). Timescales of shock processes in chondritic and martian meteorites. Nature 435:1071-1074.
Binns RA, Davis RJ, Reed SJB (1969). Ringwoodite, Natural (Mg,Fe) 2 SiO 4 Spinel in the Tenham Meteorite. Nature 221:943-944.
Chakraborty S (2010). Diffusion Coefficients in Olivine, Wadsleyite and Ringwoodite. Reviews in Mineralogy & Geochemistry 72:603-639.
Chakraborty S, Knoche R, Schulze H, Rubie DC, Dobson D, Ross NL, Angel RJ (1999). Enhancement of Cation Diffusion Rates Across the 410-Kilometer Discontinuity in Earth's Mantle. Science 283:362.
Chen M, El Goresy A, Gillet P (2004). Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proc Natl Acad Sci U S A 101:15033-15037.
Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996). The Majorite-Pyrope + Magnesiowüstite Assemblage: Constraints on the History of Shock Veins in Chondrites. Science 271:1570-1573.
Diedrich T, Sharp TG, Leinenweber K, Holloway JR (2009). The effect of small amounts of H 2 O on olivine to ringwoodite transformation growth rates and implications for subduction of metastable olivine. Chemical Geology 262:87-99.
Du Frane WL, Sharp TG, Mosenfelder JL, Leinenweber K (2013). Ringwoodite growth rates from olivine with ~75 ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone. Phys Earth Planet Inter 219:1–10.
Farber DL, Williams Q, Ryerson FJ (2000). Divalent cation diffusion in Mg2SiO4 spinel (ringwoodite), β phase (wadsleyite), and olivine: Implications for the electrical conductivity of the mantle. Journal of Geophysical Research Solid Earth 105:513-529.
Feng L, Lin Y, Hu S, Xu L, Miao B (2011). Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra. Am Min 96:1480-1489.
Fritz J, Greshake A, Fernandes VA (2017). Revising the shock classification of meteorites. Meteorit Planet Sci 52(6):1216-1232.
Holzapfel C, Rubie D, Frost D, Langenhorst F (2005). Fe-Mg interdiffusion in (Mg,Fe)SiO3 Perovskite and lower mantle reequilibration. Science 09:1707-1710.
Hu JP, Sharp TG (2017). Back-transformation of high-pressure minerals in shocked chondrites: Low-pressure mineral evidence for strong shock. Geochim Cosmochim Acta 215:277-294.
Hua X, Huss G, Tachibana S, Sharp TG (2005). Oxygen, silicon, and Mn-Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: Constraints for its formation history. Geochim Cosmochim Acta 69:1333-1348.
Kerschhofer L, Rubie DC, Sharp TG, Mcconnell JDC, Dupas-Bruzek C (2000). Kinetics of intracrystalline olivine–ringwoodite transformation. Phys Earth Planet Inter 121: 59-76.
Kerschhofer L, Dupas C, Liu M, Sharp TG, Durham WB, Rubie DC (1998). Polymorphic transformations between olivine, wadsleyite and ringwoodite: mechanisms of intracrystalline nucleation and the role of elastic strain. Mineralogical Magazine 62 (5):617–638.
Kerschhofer L, Sharp TG, Rubie DC (1996). Intracrystalline Transformation of Olivine to Wadsleyite and Ringwoodite Under Subduction Zone Conditions. Science 274:79-81.
Langenhorst F, Poirier JP (2000). Anatomy of black veins in Zagami: clues to the formation of high-pressure phases. Earth Planet Sci Lett 184:37-55.
Mason B, Nelen J, White JS (1968). Olivine-Garnet Transformation in a Meteorite. Science 160:66-67.
Miyahara M, El Goresy A, Ohtani E, Nagase T, Nishijima M, Vashaei Z, Ferroir T, Gillet P, Dubrovinsky L, Simionovici A (2008). Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proc Natl Acad Sci U S A 105:8542-8547.
Miyahara M, Ohtani E, El Goresy A, Ozawa S, Gillet P (2016). Phase transition processes of olivine in the shocked Martian meteorite Tissint: Clues to origin of ringwoodite-, bridgmanite and magnesiowüstite-bearing assemblages. Phys Earth Planet Inter 259:18-28.
Ohtani E, Kimura Y, Kimura M, Kubo T, Takata T (2006). High-pressure minerals in shocked L6-chondrites: constraints on impact conditions. Shock Waves 16:45-52.
Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T, Kubo T (2004). Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet Sci Lett 227:505-515.
Pittarello L, Ji G, Yamaguchi A, Schryvers D, Debaille V, Claeys P (2015). From olivine to ringwoodite: a TEM study of a complex process. Meteorit Planet Sci 50: 944-957.
Price GD, Putnis A, Agrell SO (1979). Electron petrography of shock-produced veins in the Tenham chondrite. Contrib Mineral Petrol 71:211-218.
Putnis A, Price GD (1979). High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature 280:217-218.
Tomioka N, Miyahara M (2017). High-pressure minerals in shocked meteorites. Meteorit Planet Sci 52(9):2017-2039.
Sharp TG, Lingemann CM, Dupas C, Stöffler D (1997). Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 277: 352–355.
Sharp TG, DeCarli PS 2006. Shock effects in meteorites. In: Lauretta DS, Jr HYM (Eds.), Meteorites and the Early Solar System II. University of Arizona Press, pp. 653-677.
Sharp TG, Xie Z, DeCarli PS, Hu J (2015). A large shock vein in L chondrite Roosevelt County 106: Evidence for a long‐duration shock pulse on the L chondrite parent body. Meteorit Planet Sci 50:1941-1953.
Stöffler D, Keil K, Scott ERD (1991). Shock metamorphism of ordinary Chondrite meteorites. Geochim Cosmochim Acta 55:3845-3867.
Weisberg MK, Smith C, Benedix G, Herd CDK, Righter K, Haack H, Yamaguchi A, Aoudjehane HC, Grossman JN (2009). The Meteoritical Bulletin, No. 96, September 2009. Meteorit Planet Sci 44:1355-1397.
Xie X, Minitti ME, Chen M, Mao Ho-K, Wang D, Shu J, Fei Y (2002). Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochim Cosmochim Acta 66:2439-2444.
Xie Z, Sharp TG (2004). High-pressure phases in shock-induced melt veins of the Umbarger L6 chondrite: Constraints of shock pressure. Meteorit Planet Sci 39:2043-2054.
Xie Z, Sharp TG (2007). Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth Planet Sci Lett 254:433-445.
Xie Z, Sharp TG, DeCarli PS (2006a). Estimating shock pressures based on high-pressure minerals in shock-induced melt veins of L chondrites. Meteorit Planet Sci 41:1883-1898.
Xie Z, Sharp TG, DeCarli PS (2006b). High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration. Geochim Cosmochim Acta 70:504-515.
Xie Z, Li X, Sharp TG, De Carli PS (2012). Shock-induced ringwoodite rims around olivine fragments in melt veins of Antarctic chondrite GRV022321: Transformation Mechanism. 53rd Lunar and Planetary Science Conference, p. 2766.