2.
Padi FK. Genotype × environment interaction for yield and reaction to leaf spot infections
in groundnut in semiarid West Africa. Euphytica. 2008;164(143–161).
3.
Suther M.S. DM and P. Yield and Nutrient Absorption by Groundnut and Iron Availability
in Soil as Influenced By Lime and Soil Water. J Indian Soc Soil Sci. 1992;40:594–596.
4.
Krishnan A, Pereira A. Integrative approaches for mining transcriptional regulatory
programs in Arabidopsis. Br Funct Genomic Proteomic. 2008;7(4):264–74.
5.
Price AH Horton P, Jones HG, Griffiths H. CJE. Linking drought-resistance mechanisms
to drought avoidance in upland rice using a QTL approach: progress and new opportunities
to integrate stomatal and mesophyll responses. J Exp Bot. 2002;53:989–1004.
6.
Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimaraes P, Nigam SN, et al. Advances
in Arachis genomics for peanut improvement. Biotechnol Adv. 2012;30(3):639–51.
7.
Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, et al. Genomewide
association studies for 50 agronomic traits in peanut using the “reference set” comprising
300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One. 2014;9(8):e105228.
8.
Janila Venuprasad, R., Abhishek, R., Aruna U., Reddy, K.R., Waliyar, F. and Nigam
S.N. P. Genetic analysis of resistance to late leaf spot in interspecific groundnuts.
Euphytica. 2013;193(1):13–25.
9.
Varshney RK, Mohan SM, Gaur PM, Gangarao N V, Pandey MK, Bohra A, et al. Achievements
and prospects of genomics-assisted breeding in three legume crops of the semi-arid
tropics. Biotechnol Adv. 2013;31(8):1120–34.
10.
Agarwal, G. , Clevenger, J. , Pandey, M. K., Wang, H. , Shasidhar, Y. , Chu, Y. ,
Fountain, J. C., Choudhary, D. , Culbreath, A. K., Liu, X. , Huang, G. , Wang, X.
, Deshmukh, R. , Holbrook, C. C., Bertioli, D. J., Ozias‐Akins, P. , Jackson, S. A.,
Varshn B. High-density genetic map using whole-genome resequencing for fine mapping
and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J.
2018;16(11):1954–67.
11.
Willing EM, Hoffmann M, Klein JD, Weigel D, Dreyer C. Paired-end RAD-seq for de novo
assembly and marker design without available reference. Bioinformatics. 2011;27(16):2187–93.
12.
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust,
simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One.
2011;6(5):e19379.
13.
Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology
for sequence information independent genotyping. Nucleic Acids Res. 2001;29(4):E25.
14.
Valdisser P, Pereira WJ, Almeida Filho JE, Muller BSF, Coelho GRC, de Menezes IPP,
et al. In-depth genome characterization of a Brazilian common bean core collection
using DArTseq high-density SNP genotyping. BMC Genomics. 2017;18(1):423.
15.
Al-Abdallat AM, Karadsheh A, Hadadd NI, Akash MW, Ceccarelli S, Baum M, et al. Assessment
of genetic diversity and yield performance in Jordanian barley (Hordeum vulgare L.) landraces grown under Rainfed conditions. BMC Plant Biol. 2017;17(1).
16.
Abu Zaitoun SY, Jamous RM, Shtaya MJ, Mallah OB, Eid IS, Ali-Shtayeh MS. Characterizing
Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers.
BMC Plant Biol. 2018;18(1):246.
17.
Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP. Genome-wide association mapping
of yield and yield components of spring wheat under contrasting moisture regimes.
Theor Appl Genet. 2014;127(4):791–807.
18.
Sneller CH, Mather DE, Crepieux S. Analytical Approaches and Population Types for
Finding and Utilizing QTL in Complex Plant Populations. Crop Sci. 2009;49(2):363–80.
19.
Baird SJ. Exploring linkage disequilibrium. Mol Ecol Resour. 2015;15(5):1017–9.
20.
Tattaris M, Reynolds MP, Chapman SC. A Direct Comparison of Remote Sensing Approaches
for High-Throughput Phenotyping in Plant Breeding. Front Plant Sci. 2016;7:1131.
21.
Sukumaran S, Reynolds MP, Sansaloni C. Genome-Wide Association Analyses Identify QTL
Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield Potential,
Drought, and Heat Stress Environments. Front Plant Sci. 2018;9:81.
22.
Nielen S, Vidigal BS, Leal-Bertioli SC, Ratnaparkhe M, Paterson AH, Garsmeur O, et
al. Matita, a new retroelement from peanut: characterization and evolutionary context
in the light of the Arachis A-B genome divergence. Mol Genet Genomics. 2012;287(1):21–38.
23.
Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SC, Valls JF, Bertioli DJ. A study
of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite
markers. Ann Bot. 2013;111(1):113–26.
24.
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, et al. The genome
sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated
peanut. Nat Genet. 2016;48(4):438–46.
25.
Neumann K Denčić S, Varshney R, Bo¨rner A KB. Genome-wide association mapping: a
case study in bread wheat (Triticum aestivum L.). Mol Breed. 2011;27(1):37–58.
26.
Mwadzingeni L, Shimelis H, Rees DJ, Tsilo TJ. Genome-wide association analysis of
agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS
One. 2017;12(2):e0171692.
27.
Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, et al. An integrated genetic linkage
map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet. 2012;124(4):653–64.
28.
Farre A, Benito IL, Cistue L, de Jong JH, Romagosa I, Jansen J. Linkage map construction
involving a reciprocal translocation. Theor Appl Genet. 2011;122(5):1029–37.
29.
Vergnolle C, Vaultier M-N, Taconnat L, Renou J-P, Kader J-C, Zachowski A, et al. The
Cold-Induced Early Activation of Phospholipase C and D Pathways Determines the Response
of Two Distinct Clusters of Genes in Arabidopsis Cell Suspensions. Plant Physiol.
2005;139(3):1217.
30.
Natalini A, Vanesa M-D, Ferrante A, Pardossi A. Effect of temperature and ripening
stages on membrane integrity of fresh-cut tomatoes. Acta Physiol Plant. 2013;36(1):191–8.
31.
Ryu JY, Kim J-Y, Park C-M. Adaptive thermal control of stem gravitropism through alternative
RNA splicing in Arabidopsis. Plant Signal Behav. 2015;10(11):e1093715–e1093715.
32.
Kim JY, Ryu JY, Baek K, Park CM. High temperature attenuates the gravitropism of inflorescence
stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis. New Phytol.
2016;209(1):265–79.
33.
Reddy Pullagurala VL, Adisa IO, Rawat S, Kalagara S, Hernandez-Viezcas JA, Peralta-Videa
JR, et al. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation
in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem. 2018;132:120–7.
34.
Samreen T, Humaira, Shah HU, Ullah S, Javid M. Zinc effect on growth rate, chlorophyll,
protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab J Chem. 2017;10:S1802–7.
35.
Ahn CS, Cho HK, Lee D-H, Sim H-J, Kim S-G, Pai H-S. Functional characterization of
the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective
cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. J Exp Bot.
07/20. 2016;67(17):5217–32.
36.
Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. Diversity arrays technology:
A generic genome profiling technology on open platforms. Methods Mol Biol. 2012;888:67–89.
37.
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Usinglme4.
J Stat Softw. 2015;67(1).
38.
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software
for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.