1 Wildburger, N. C. et al. Diversity of Amyloid-beta Proteoforms in the Alzheimer’s Disease Brain. Scientific Reports 7, 9520, doi:10.1038/s41598-017-10422-x (2017).
2 Selivanova, O. M. et al. To Be Fibrils or To Be Nanofilms? Oligomers Are Building Blocks for Fibril and Nanofilm Formation of Fragments of Aβ Peptide. Langmuir 34, 2332-2343, doi:10.1021/acs.langmuir.7b03393 (2018).
3 Niu, Z., Zhang, Z., Zhao, W. & Yang, J. Interactions between amyloid β peptide and lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1860, 1663-1669, doi:https://doi.org/10.1016/j.bbamem.2018.04.004 (2018).
4 Koynova, R. & Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 1376, 91-145, doi:https://doi.org/10.1016/S0304-4157(98)00006-9 (1998).
5 Yoda, M., Miura, T. & Takeuchi, H. Non-electrostatic binding and self-association of amyloid β-peptide on the surface of tightly packed phosphatidylcholine membranes. Biochemical and Biophysical Research Communications 376, 56-59, doi:https://doi.org/10.1016/j.bbrc.2008.08.093 (2008).
6 Buchsteiner, A., Hauβ, T., Dante, S. & Dencher, N. A. Alzheimer's disease amyloid-β peptide analogue alters the ps-dynamics of phospholipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1798, 1969-1976, doi:https://doi.org/10.1016/j.bbamem.2010.06.024 (2010).
7 Martel, A. et al. Membrane Permeation versus Amyloidogenicity: A Multitechnique Study of Islet Amyloid Polypeptide Interaction with Model Membranes. Journal of the American Chemical Society 139, 137-148, doi:10.1021/jacs.6b06985 (2017).
8 Sengupta, U., Nilson, A. N. & Kayed, R. The Role of Amyloid-ß Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 6, 42-49, doi:10.1016/j.ebiom.2016.03.035 (2016).
9 Yoon, A., Zhen, J. & Guo, Z. Segmental structural dynamics in Aβ42 globulomers. Biochemical and Biophysical Research Communications 545, 119-124, doi:https://doi.org/10.1016/j.bbrc.2021.01.081 (2021).
10 Sugiura, Y., Ikeda, K. & Nakano, M. High Membrane Curvature Enhances Binding, Conformational Changes, and Fibrillation of Amyloid-β on Lipid Bilayer Surfaces. Langmuir 31, 11549-11557, doi:10.1021/acs.langmuir.5b03332 (2015).
11 Dante, S., Hauss, T., Brandt, A. & Dencher, N. A. Membrane fusogenic activity of the Alzheimer's peptide A beta(1-42) demonstrated by small-angle neutron scattering. J. Mol. Biol. 376, 393-404, doi:10.1016/j.jmb.2007.11.076 (2008).
12 Barrett, M. A. et al. Alzheimer's peptide amyloid-β, fragment 22–40, perturbs lipid dynamics. Soft Matter 12, 1444-1451, doi:10.1039/C5SM02026C (2016).
13 Geisler, R. et al. Aescin-Induced Conversion of Gel-Phase Lipid Membranes into Bicelle-like Lipid Nanoparticles. Langmuir 35, 16244-16255, doi:10.1021/acs.langmuir.9b02077 (2019).
14 Nieh, M.-P. et al. Spontaneously Formed Unilamellar Vesicles with Path-Dependent Size Distribution. Langmuir 21, 6656-6661, doi:10.1021/la0508994 (2005).
15 Accardo, A. et al. Amyloid β Peptide Conformational Changes in the Presence of a Lipid Membrane System. Langmuir 30, 3191-3198, doi:10.1021/la500145r (2014).
16 Naudí, A. et al. in International Review of Neurobiology Vol. 122 (ed Michael J. Hurley) 133-189 (Academic Press, 2015).
17 Marsh, D. Handbook of lipid bilayers. (CRC press, 2013).
18 Yamada, N. L. Kinetic Process of Formation and Reconstruction of Small Unilamellar Vesicles Consisting of Long- and Short-Chain Lipids. Langmuir 28, 17381-17388, doi:10.1021/la3026842 (2012).
19 Yamada, N. L., Hishida, M. & Torikai, N. Nanopore formation on unilamellar vesicles of long- and short-chain lipids. Physical Review E 79, 032902, doi:10.1103/PhysRevE.79.032902 (2009).
20 Murugova, T. et al. Structural changes introduced by cholesterol and melatonin to the model membranes mimicking preclinical conformational diseases. General physiology and biophysics 39, 135-144, doi:10.4149/gpb_2019054 (2020).
21 Kučerka, N., Nagle, J. F., Feller, S. E. & Balgavý, P. Models to analyze small-angle neutron scattering from unilamellar lipid vesicles. Physical Review E 69, 051903, doi:10.1103/PhysRevE.69.051903 (2004).
22 Kučerka, N., Heberle, F. A., Pan, J. & Katsaras, J. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering. Membranes 5, 454-472 (2015).
23 Kuklin, A. et al. On the Origin of the Anomalous Behavior of Lipid Membrane Properties in the Vicinity of the Chain-Melting Phase Transition. Scientific Reports 10, 5749, doi:10.1038/s41598-020-62577-9 (2020).
24 Sun, W. Q., Leopold, A. C., Crowe, L. M. & Crowe, J. H. Stability of dry liposomes in sugar glasses. Biophysical Journal 70, 1769-1776, doi:https://doi.org/10.1016/S0006-3495(96)79740-0 (1996).
25 Breßler, I., Kohlbrecher, J. & Thünemann, A. F. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. Journal of Applied Crystallography 48, 1587-1598, doi:10.1107/S1600576715016544 (2015).
26 Nieh, M.-P., Kučerka, N. & Katsaras, J. in Methods in Enzymology Vol. 465 3-20 (Academic Press, 2009).
27 Buchsteiner, A., Hauß, T. & Dencher, N. A. Influence of amyloid-β peptides with different lengths and amino acid sequences on the lateral diffusion of lipids in model membranes. Soft Matter 8, 424-429, doi:10.1039/C1SM06823G (2012).
28 Dante, S., Hauss, T. & Dencher, N. A. β-Amyloid 25 to 35 Is Intercalated in Anionic and Zwitterionic Lipid Membranes to Different Extents. Biophysical Journal 83, 2610-2616, doi:https://doi.org/10.1016/S0006-3495(02)75271-5 (2002).
29 Barrett, M. A., Alsop, R. J., Hauss, T. & Rheinstadter, M. C. The Position of Abeta22-40 and Abeta1-42 in Anionic Lipid Membranes Containing Cholesterol. Membranes (Basel) 5, 824-843, doi:10.3390/membranes5040824 (2015).
30 Dies, H., Toppozini, L. & Rheinstädter, M. C. The Interaction between Amyloid-β Peptides and Anionic Lipid Membranes Containing Cholesterol and Melatonin. PLoS ONE 9, e99124, doi:10.1371/journal.pone.0099124 (2014).
31 Kuklin, A. I. et al. High-throughput SANS experiment on two-detector system of YuMO spectrometer. Journal of Physics: Conference Series 994, 012016, doi:10.1088/1742-6596/994/1/012016 (2018).
32 Soloviev, A. G. et al. SAS program for two-detector system: seamless curve from both detectors. Journal of Physics: Conference Series 848, 012020 (2017).
33 Ananiev, V. et al. The world’s first pelletized cold neutron moderator at a neutron scattering facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 320, 70-74, doi:https://doi.org/10.1016/j.nimb.2013.12.006 (2014).
34 Van Der Spoel, D. et al. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry 26, 1701-1718, doi:https://doi.org/10.1002/jcc.20291 (2005).
35 Klauda, J. B. et al. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. The Journal of Physical Chemistry B 114, 7830-7843, doi:10.1021/jp101759q (2010).
36 Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry 29, 1859-1865, doi:https://doi.org/10.1002/jcc.20945 (2008).