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We investigate the energy states of confined electrons in doped quantum structures with Razavy-
like confining potentials. The theoretical investigation is performed within the effective mass and
parabolic band approximations, including the influence of externally applied electric and magnetic
fields. First, we analyze the case of a Razavy quantum well and determine its conduction subband
spectrum, focusing on the lowest energy levels and their probability densities. These properties
have been numerically determined by self-consistently solving the coupled system of Schrödinger,
Poisson, and charge neutrality equations. Doping is introduced via an on-center δ-like layer. In
order to evaluate the associated total (linear plus nonlinear) optical absorption coefficient (TOAC),
we have calculated the corresponding diagonal and off-diagonal electric dipole matrix elements, the
main energy separation, and the occupancy ratio which are the main factors governing the variation
of this optical response. A detailed discussion is given about the influence of doping concentration as
well as electric and magnetic fields, which can produce shifts in the light absorption signal, towards
either lower or higher frequencies. As an extension of the self-consistent method to a two-dimensional
problem, the energy states of quantum wire system of circular cross section, with internal doping
and Razavy potential have been calculated. The response of eigenvalues, self-consistent potentials
and electron densities is studied with the variation of δ-doping layer width and of the donor density.
Finally, the origin of Friedel-like oscillations, that arise in the density profile, generated by the
occupation of internal and surface electronic states has been explained.

I. INTRODUCTION

Semiconductor structures based on quantum wells
(QWs), quantum-well wires , and quantum dots have
acquired a huge importance in the process of designing
low-dimensional devices, mostly due to their features of
charge carriers confinement. To satisfy the exigence re-
quired by new generation of optoelectronic devices, the
involved semiconductor structures must be suitably se-
lected upon the basis of their confinement potential ge-
ometry, their dimensions, and the possible influence of
certain external physical factors. Among these factors,
we can cite the insertion of delta doped layers, as well as
the application of either nonresonant intense laser field
radiation, electric fields, magnetic fields, or a combina-
tion of these probe fields. All of them would play a crucial
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role in tuning the energy spectrum of the confined carrier
states [1–10].

As it is well known, the application of an external elec-
tric field leads to a tilt of the confining potential and
pushes the electron wave functions towards the edge of
the structure, producing a significant change in the en-
ergy levels and, per consequent, in the transition ener-
gies. This, in turn, produces noticeable modifications
in the optical absorption response of the system. The
application of a magnetic field provides an additional
parabolic confinement that causes further spatial spread
in the wave functions so that affecting the dipole matrix
elements. The influences of both electric and magnetic
fields have been theoretically and experimentally studied
by many researchers [11–21]. For instance, Dakhlaoui
et al., investigated the effects of magnetic and electric
fields on the TOAC [22]. They showed that these probes
can control the red and blue shifts of the TOAC in dou-
ble and triple δ-doped GaAs semiconductor heterostruc-
tures. Ungan et al. reported on the optical responses
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in hyperbolic-like QWs under external electric and mag-
netic fields [23]. They demonstrated that the TOAC
and the total relative refractive index change coefficient
can be shifted towards the blue or the red by adjust-
ing the applied field intensities. The impacts of external
perturbations on the optical and magnetic properties of
GaAs/AlGaAs semi-parabolic QW have been widely dis-
cussed and commented by Hien et al. [24]. They proved
that the magneto-optical properties are largely affected
by the external fields.

Besides the application of external fields, the δ−doping
technique represents an ultimate concept in semiconduc-
tor’s processing [25–31]. It is proved among the last years
that this method is highly practical to adjust the energy
levels in order to obtain the desired electronic mobility
and optical absorption. For instance, in GaAs-based sys-
tems, the most typical n-type δ−doping technique con-
sists of inserting a thin layer containing silicon atoms.
Once these atoms are ionized, they supply additional free
electrons into the system. In addition, the silicon layer
creates a triangular-shaped quantum well which would
affect the spatial spread of the wave functions and furnish
further confinement to the carriers [32, 33]. Various re-
search works have explored, both experimentally and the-
oretically, the impact of δ-doping on the behavior of the
TOAC in semiconductor quantum nanostructures [34–
41]. For instance, Gaggero-Sager et al. studied the ef-
fects of temperature on the energy levels in a single doped
QW [42], whereas Dhafer et al. showed the importance of
an inserted δ-InGaAs layer in a single AlxGayIn1−x−yAs
QW. They found that the inserted layer can improve the
intensity of the optical gain which is a requirement for
fiber-optical communications [43]. J. Osvald studied the
effect of a non-central δ-doping layer on the energy levels
and electronic density in GaAs QWs [44]. On the other
hand, in 1980 M. Razavy used double potential wells in
the quantum theory of molecules to describe the motion
of a particle in the presence of two force fields [45]. These
types of potentials are known today as Razavy potentials
[46, 47], and are used as a model to describe the coupling
of two molecules or quantum dots [48–51]. Effects of in-
tense laser field and position dependent effective mass in
Razavy QWs (Razavy-like quantum wells) were investi-
gated in Ref. [52]. In their works, these authors have
shown that the intensity of the TOAC can be largely
tuned by varying the ionized impurity concentration in
the doping layer.

Another class of heterostructures that can be studied
by a similar procedure are quantum wires (QWRs), which
are semiconductor structures in which electrons are con-
fined in the transverse plane and therefore can only move
in one dimension. A consequence of the above is that the
electronic energy levels present a discrete behavior along
the cross section of the structure, while in the free dimen-
sion the electrons present a continuous spectrum. QWRs
have been the subject of study for more than 40 years,
as noticed -for example- from a bunch of early references
[53–57]. Due to the remarkable applications of this type

of low-dimensional structures in areas as diverse as flex-
ible electronics (when designing thin-film transistors) or
high-efficiency solar cells [58], among others; to seek an
improvement in the properties of electronic conduction
would become a boost to development and characteriza-
tion of this type of systems. In recent years, results of
great interest have been reported along these lines, some
of which have appeared in references [59–62].

Motivated by all the cited works, here we aim to inves-
tigate the effects of the concentration of an on-center thin
doping layer and of externally applied electric and mag-
netic fields on the TOAC in Razavy-like GaAs quantum
structures. We shall study the impact of these param-
eters on the lowest energy separations, the occupancy
ratios, and dipole matrices which are preponderant fac-
tors governing the TOAC variation. In the first part
we develop the one-dimensional problem of a GaAs δ-
doped QW (with z-oriented growth direction) having a
Razavy-type confinement potential. For this system, the
confined electronic states are calculated, as well as the
self-consistent potentials, with a special care taken on de-
termining the Fermi level position, affected by the both
temperature and ionized impurity distribution. Subse-
quently, external electric and magnetic fields are applied
in order to analyze the variations in obtained results and
finally the optical absorption response is investigated.
The second problem dealt with is a two-dimensional sys-
tem corresponding to a GaAs QWR with circular cross
section and exposed borders (the confinement plane has
been taken as xy), with an additional δ-type doping and
an inner Razavy-like potential. The problem for the elec-
tron energy states in this case is also solved in a self-
consistent way, taking into account a fundamental differ-
ence: In this case the Fermi level is no longer modified
by the density of donors because the system has exposed
borders. So, a “Fermi Level Pinning” is presented which
keeps it fixed. Another fundamental difference with re-
spect to the QW structure is that, in this type of systems,
variations in the electron density profile known as Friedel
oscillations can occur at low temperatures. To study this
particular phenomenon, electron states in this system has
been calculated for T = 10 K and not at 300 K as the
first problem. In this second case, the electronic states,
self-consistent potential and electron density have been
calculated for different widths of the δ-layer, with differ-
ent concentrations. Self-consistent procedures have been
performed by numerically solving the effective mass con-
duction band equation using the finite element method
(FEM). In accordance, this work is organized as follows:
in sections 2 we outline the theoretical equations and
the method of resolution for the one-dimensional system
quantum well and the quantum wire system with exposed
boundaries. The discussion and comments on the ob-
tained results for each system are presented in section 3,
while the conclusions are given in section 4.
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II. THEORETICAL FRAMEWORK

A. Razavi quantum-well (quantum well with
Razavy-like potential)
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FIG. 1: (color online) Schematic representation of doped
Razavy quantum well under applied electric and magnetic
fields.

The problem under consideration here consists of a
GaAs conduction electron that moves under the influ-
ence of an on-center doped Razavy-like QW potential
and undergoes the effect of external electric and mag-
netic fields. The electric field is assumed to be oriented
along the z-growth direction and the magnetic field is ap-
plied perpendicular to the electric field, and lies within
the plane of the layers. In Fig. 1 we plot a Razavy-like
confining profile, together with a schematic representa-
tion of the n-type doped layer. The δ-parameter (2-nm in
this work) corresponds to the finite width of the on-center
doped layer, which has a two-dimensional Nd concentra-
tion of ionized donor atoms. Within the effective mass
and parabolic band approximations, the Hamiltonian for
a confined electron is given by [1]:

H =
1

2m∗

[
~p+

e

c
~A(~r)

]2
+ Vc(z) + VH(z) + e F z , (1)

where c, e, and m∗ denote the speed of light in the vac-
uum, the absolute value of the elementary charge, and the
electron effective mass, respectively. Additionally, ~p rep-
resents the momentum operator, and F is the intensity of

the applied electric (~F ). Within the Landau gauge, the
vector potential associated to the applied magnetic field

( ~B) is given by ~A(~r) = B z x̂ (B stands for the magnetic
field intensity). Furthermore, VH(z) is the Hartree po-
tential, which represents the additional conduction band
reshaping due to the presence of the low-dimensional elec-
tron gas that arises from the donor ionization in the δ-
layer. Besides, Vc(z) is the Razavy-like confining poten-
tial given by [52]:

Vc(z) = V0

[
A cosh

( z
D

)
−M

]2
, (2)

where a set of parameters with V0 = 228 meV, A = 2,

M = 3, D =
Leff

3 , and Leff = 20 nm (the total width of
the QW) has been chosen for the calculation.

The wave function associated to the Hamiltonian in
Eq. (1) can be written as [63]:

ψ (~r) = exp(i ~k⊥ · ~ρ) Φ′(z) , (3)

where ~k⊥ = (kx, ky), ~ρ = (x, y), and Φ′(z) satisfies the
following differential equation [63]:

H0 Φ′ (z) =

(
Ez −

~2 k2y
2m∗

)
Φ′ (z) . (4)

where

H0 = − ~2

2m∗
d2

dz2
+
e2B2

2m∗

(
z +

~ kx
eB

)2

+e F (z + Leff/2) + VH (z) . (5)

The z-component of the Eq. (4) can be written in the
form [63]:

H Φ (z) = Ez Φ (z) . (6)

where

H = − ~2

2m∗
d2

dz2
+
e2B2

2m∗
z2

+e F (z + Leff/2) + VH (z) . (7)

Note that the solutions of Eq. (6) correspond to the bot-
tom of the confined conduction subbands, i.e., (kx, ky) =
(0, 0).

The calculation of the Fermi level (EF ) is based on the
charge neutrality condition, such that the total number
of electrons must be equal to the total number of ionized
donors per unit area (assuming that all the silicon atoms
are ionized)

nd =
∑
i

m∗ kB T

π ~2
log

[
1 + exp

(
EF − Ei
kB T

)]
, (8)

where kB is the Boltzmann constant and T (= 300 K in
this work) denotes the absolute temperature.

The Hartree potential VH (z) which describes the elec-
trostatic interaction of electrons and ionized ions results
from the solution of the generalized Poisson equation [64]:

d2VH (z)

dz2
=

e2

ε ε0
[nd (z)− n (z)] , (9)

where ε (ε0) is the GaAs (vacuum) static dielectric con-
stant and nd is the 3D donor density in the delta layer.
Also, in Eq. (9)

n(z) =
∑
i

m∗ kB T

π ~2
log

[
1 + exp

(
EF − Ei
kB T

)]
Φ2
i (z) ,

(10)
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The Eqs. (6-9) are discretized using the finite differ-
ence method (FDM) and solved iteratively. Under such
a procedure, the Schrödinger and Poisson equations are
then changed to matrices of type Ax = λx and B x = ρ,
respectively. Here, λ represents the energy and x is a col-
umn wave vector describing the electron wave function.
After computing the energy levels and their correspond-
ing wave functions, the linear, third-order nonlinear, and
total optical absorption coefficients for the intersubband
transitions between initial and final states Ei → Ef can
be evaluated from [65–67]:

α1 (ω) = ω

√
µ

εR
× e2 |Mif |2 σ̃if ~/τin

(∆E − ~ω)
2

+ (~/τin)
2 , (11)

α3 (ω, I) = −2ω

√
µ

εR

(
I

ε0 nr c

)
× e4 |Mif |4 σ̃if (~/τin)[

(∆E − ~ω)
2

+ (~/τin)
2
]2

×

(
1− Ω

(∆E − ~ω)
2 − (~/τin)

2
+ 2 ∆E (∆E − ~ω)

(∆E)
2

+ (~/τin)
2

)
(12)

and

α (ω, I) = α1 (ω) + α3 (ω, I) . (13)

In the previous equations Ω =
|Mff−Mii|2
|2Mif |2 , ∆E = Ef −

Ei,

Mif =

∫ +∞

−∞
Φ∗f (z) Φi(z) z dz (14)

is the reduced dipole matrix element, and σ̃if =
m∗ kB T
Leff π ~2 σif , with

σif = ln

{
1 + exp [(EF − Ei)/kBT ]

1 + exp [(EF − Ef )/kBT ]

}
. (15)

Here, µ represents the free space permeability, τin =
0.14 ps stands for the intersubband relaxation time, and
I is the intensity of incident light. The other physical pa-
rameters used in this work are [68, 69]: m∗ = 0.067m0

(where m0 is free electron mass), e = 1.602×10−19 C, ~ =
1.056× 10−34 J s; nr =

√
ε = 3.2, µ = 4π × 10−7 Hm−1,

ε = 12.35, ε0 = 8.854×10−12C2 N−1 m−2, εR = ε ε0, and
I = 0.5 MW/cm2.

B. Razavi quantum-wire

The theory required to study the two-dimensional
problem of a QWR with delta-type doping is very sim-
ilar to that developed for the one-dimensional well sys-
tem since both problems are solved by means of the self-
consistent method. For this reason, and to clarify the

procedure without being redundant, some equations have
been rewritten in this section, with the aim of presenting
generalization to a 2D system.

The structure under consideration corresponds to an
infinite QWR of GaAs with circular cross section and
exposed borders. That is, the system is not immersed
in any substrate but is in contact with vacuum. Ad-
ditionally, a Razavy potential and a delta-doped layer
have been added to shape the confining potential. A
consequence of the above is the appearance of both inner
and surface states in the system, giving rise to the phe-
nomenon known as “Fermi Level Pinning” [70] in which
a charge transfer from bulk states to surface states oc-
curs, thus causing the Fermi level to remain fixed at a
value within the band gap, regardless of the donor den-
sity in the system. For GaAs, a potential value of 0.7
eV, which corresponds to half the gap is normally used
for the surface.

x

y

Vacuum

R0
rd

z

GaAsNd

FIG. 2: Diagram of the infinite quantum wire of GaAs sur-
rounded by vacuum, with a circular cross section of radius R0.
The coordinate system is centered on the symmetry axis of
the wire. An inner doping layer of radius rd has been included
in the system.

Figure 2 shows the schematic representation of the
quantum wire, as well as the coordinate system used for
numerical calculations. This is a QWR of radius R0,
surrounded by vacuum. Inserted at the center of this
cylinder, an inner layer of -fully- ionized donors of radius
rd is included.

Again, the chosen numerical approach to solve this
type of problem is the self-consistent method. It con-
sists of a bidirectional coupling between the Poisson and
Schrödinger equations. The electric potential that comes
from the Poisson equation (including the effect of donor
density) must be added to the confining potential term to
later be included in the Schrödinger equation. Similarly,
a statistically weighted sum of the probability density as-
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sociated with the electronic occupation of the states of
the Schrödinger problem contributes to the space charge
density that enters the Poisson equation. This process
implies an iteration scheme where the confining poten-
tial becomes modified by the redistribution of charges.

As a starting point of the self-consistent method, and
following the Luscombe and Luban procedure [71], we
shal consider that electrons in the cross section of the
QWR behave as a two-dimensional charge-carrier gas.
This indicates that a good approximation for the electron
density would be the Thomas-Fermi one (Eq. 16). Such
electron density must contribute to the charge density in
the system and therefore to the Hartree potential that is
obtained through the Poisson equation,

n(x, y, T ) = NC F1/2 (β (EF −Υ(x, y, T ))) (16)

where β = 1/kBT is the Boltzmann factor, NC =
(2m∗/πβ~2)3/2/4 is the effective density of states,
Υ(x, y, T ) is the electronic potential generated by the
Fermi level pinning on the exposed lateral surface, the
level of doping and the lateral dimensions of the sys-
tem and is given by Υ(x, y, T ) = −e φ(x, y, T ), where
φ(x, y, T ) is the Hartree potential. Besides, e is the
charge of the electron, m∗ is the effective mass, and
F1/2(x) is the well known Fermi-Dirac integral. With
the electron density given by Eq. 16 and the density of
donors Nd given by Nd for r ≤ rd and 0 for r > rd, it is
possible to write the expression for the charge density in
the system as,

ρ(x, y, T ) = e (Nd − n(x, y, T )) (17)

where εr and ε0 are the relative permittivity and vacuum
permittivity respectively. Note that, unlike the QW, now
the charge density has a two-dimensional dependence, in
the same way the donor density for this case is identified
as Nd (for the well system it is labeled as nd). This charge
density must enter the two-dimensional Poisson equation
(Eq. 18) to obtain the Hartree potential,

− ε0εr∇2φ(x, y, T ) = ρ(x, y, T ) (18)

This equation should be solved taking into account the
boundary conditions imposed by the Fermi level pinning,
which for GaAs takes the form φ(Ω) = −(EF +0.7eV)/e,
where Ω represents the QWR boundary. The potential,
φ(x, y, T ), obtained through Eq. 18 must contribute to
the potential energy term in the Schrödinger equation,

U(x, y, T ) = −e φ(x, y, T ) + Vc(x, y) (19)

where −e φ(x, y, T ) is the contribution that comes from
the Poisson equation and the redistribution of charges
due to doping, and Vc(x, y) is the Razavy 2D poten-
tial, which has the same form as Eq. 2, changing z for

√
x2 + y2. In this case, V0 = 0.228 eV, A = 2, M = 3,

D = 1.57L, and L = 20 nm. On the other hand, the
electrons are assumed to be totally confined within the
volume of the QWR and, therefore, it must be satisfied
that Ψ(Ω) = 0 in the Schrödinger equation,

− ~2

2m∗
∇2Ψik(~r) + U(x, y, T ) Ψik(~r) = Eik Ψik(~r) (20)

Note that in Eq. 21 we have used the approximation
of effective mass for electrons in GaAs. In this equation
Ψ(~r), the wave function of the system, takes the form,

Ψik(~r) = eikz ψi(x, y) (21)

Considering now the Schrödinger equation in the xy
plane, with eigenvalue Ei associated with the state
ψi(x, y), we have to solve the problem

− ~2

2m∗
∇2ψi(x, y) + U(x, y, T )ψi(x, y) = Ei ψi(x, y),

(22)
with ψi(Ω) = 0. From here, it is possible to find the
first set of eigenfunctions and eigenvalues for the system.
With this set we can calculate the electron density asso-
ciated with the occupation of the internal states in the
system,

η(x, y, T ) = ξ
∑
i=1

F−1/2(β (EF − Ei)) |ψi(x, y)|2 (23)

where ξ = 3
√

4NC . This equation represents the density
of electron gas at a point (x, y) and temperature T . From
the electron density calculated in Eq. 24, a new profile
for the charge density of the system is obtained:

ρnew(x, y, T ) = e(Nd − η(x, y, T )). (24)

Replacing this charge density into Poisson’s equation
(18), a new Hartree potential φnew(x, y, T ) is obtained
that will -again- contribute to the potential energy term
in the Schrödinger equation. Then, a new set of eigen-
functions and eigenvalues for the system ψnewi , Enewi is
obtained. This set will be associated to a new electron
density profile ηnew relative to the occupation of each
of each state of the system. In this way, the process is
repeated iteratively until the absolute value of the differ-
ence between potential terms corresponding to two suc-
cessive self-consistent steps is smaller than a certain tol-
erance |U−Uold| < 10−6 eV. When this condition is met,
the system is said to have reached self-consistency. Note
that the confining potential and the Razavy potential do
not change with the iterative process, only the electro-
static potential changes due to the redistribution of the
charge carriers.
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Once self-consistency has been reached, the final set
of eigenvalues and eigenfunctions as well as the self-
consistent potential found are the correct solutions for
the quantum wire with exposed boundaries, Razavy po-
tential, and donor density Nd. Figure 3 shows the plots
of first five QWR confined state wave functions for three
different values of rd; from left to right, each column cor-
responds to: rd = 5 nm, rd = 10 nm, and rd = 15 nm.
Despite varying the inner radius rd, all the figures main-
tain the same cross-sectional area since the outer radius
R0 = 50 nm remains fixed. The electron density Nd has
been fixed as 3 × 1019 cm−3 for all three cases, and the
temperature has also been kept at T = 10K. The color
scale in each figure goes from the blue, which corresponds
to negative values of the wave function, to dark red which
represents positive values. Yellow indicates the points at
which the wave function is zero. With these parameters
a degeneracy between ψ1 and ψ2 appears for all rd. Note
how for rd = 5 nm -first column plots- the state ψ3 has
the shape of an s-orbital, followed by the state ψ4 which
has a d-type orbital (in analogy with atomic orbitals).
For values of rd = 10 nm and rd = 15 nm, this s state
no longer appears in ψ3, it takes the form of a d state.
This means that as long as the value of rd augments, an
exchange between states of type s and type d is present
for the third excited state.

On the other hand, the first row at the top of Fig. 3,
corresponds to the ground state ψ0 for each system, again
in analogy with the atomic orbitals, a clear symmetry
equivalent to an s-type state is evidenced. For all system
configurations, it is readily apparent that there is a high
probability of finding the electrons close to the center of
gravity of the structure. Moreover, as rd increases, the
probability at the center of the structure diminishes, at
the time that increases along the radial direction. Then,
the electrons tend to be distributed along the cross sec-
tion with the increase of the doping region width. The
first and second excited states, ψ1 and ψ2, are presented
on the second and third rows from top to bottom. Note
that these states present a symmetry similar to the p-type
orbitals.

FIG. 3: First five wave functions for a confined electron in
GaAs quantum wires. The rows from top to bottom are the
ground state and first four excited states, columns from left to
right correspond to rd = 5 nm, rd = 10 nm, and rd = 15 nm,
respectively. For all figures the radius of the quantum wire has
been set at R0 = 50 nm, T = 10K, and Nd = 3× 1019 cm−3.

III. RESULTS AND DISCUSSION

A. Results Quantum Well

In Fig. 4, we present our results for the confining po-
tential, energy levels, Fermi level, and probability den-
sities for the lowest four bound electron states in GaAs
Razavy-like QWs, considering four different cases of the
external electric and magnetic fields, as well as doping
concentration. Despite the inclusion of the third excited
state, it does not contribute to the electron density since
it is above the Fermi level of the system. From Fig. 4(a),
where these three parameters are set to zero, it is ob-
served that the central barrier is high enough such that
the ground state is almost-degenerate; corresponding to
the ground state -with even symmetry- and the first ex-
cited state -with energy very close to the ground state
one- showing odd symmetry with respect to the z = 0
point. The energy difference between the ground state
and the second excited state is approximately 150 meV.
Notice that the second excited state is located above the
central barrier. In Fig. 4(b), where an on-center doping
concentration of nd = 4.5 × 1019 cm−3 is considered in
the absence of external fields (doping of this order is dis-
cussed in Ref. [72]), one may observe the appearance of
an additional central potential well. The energy minima
of the two side QWs, which in Fig. 4(a) have zero value,
now show a slight shift towards lower energies. Besides,
the minimum of the central well positions itself at an en-
ergy slightly higher than the energy of the two lateral
minima.
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FIG. 4: (color online) Confining potentials, energy lev-
els, Fermi level, and probability density for the lowest four
bounded electron states in a GaAs Razavy-like quantum
wells. Four different cases of the external fields and dop-
ing concentration (F,B, nd) are considered: (0, 0, 0) (a),
(0, 0, 4.5× 1019 cm−3) (b), (30 kV/cm, 0, 4.5× 1019 cm−3) (c),
and (0, 30 T, 4.5× 1019 cm−3) (d). In (b-d) the Fermi level is
depicted with the horizontal line close to 200 meV.

Under these conditions, the GaAs Razavy-like double
quantum well in the presence of central doping is trans-
formed into a triple quantum well with outer barriers
that rapidly diverge, generating an infinite confining po-
tential. The presence of the central well in Fig. 4(b)
has the function of coupling the two quantum wells ini-
tially observed in Fig. 4(a). In this sense, the break-
down of the ground state degeneration is clearly noticed.
It is also observed that the first excited state shows a
blue shift of 36 meV concerning the ground state. The
latter, whose energy is 3 meV less than the maximum
of the finite potential barriers, is an even function with
its maximum probability density in the central region;
the presence of shoulders associated with the irregular-
ity of the potential well bottom is also well apparent.
Besides, the first excited state is an odd function whose
maximum probability density is located in the region of
the two lateral quantum wells. The second excited state

is remarkably insensitive to the shape of the potential
well. This is concluded by observing that the two lateral
maximums in the probability density present magnitudes
slightly lower than that shown by the central maximum.
On the other hand, in Fig. 4(c), where a delta-like dop-
ing volume density of nd = 4.5× 1019 cm−3 is combined
with an applied electric field of 30 kV/cm (developments
in high electric fields can be seen in Ref. [73, 74]), it is
possibel to see that, by breaking the symmetry of the
system, the ground state is pushed towards the left-hand
side well structure while, due to orthogonality conditions,
the first excited state displaces its maximum towards the
right-side of the system. The ground state has a quasi-
constant probability density in the region −5 nm< z < 0.
The comparison between the second excited state in Figs.
4(b) and 4(c) shows a slight blue shift due to the field-
effect without significant changes in the probability den-
sity shape. This effect is associated with the fact that
the electric potential is zero at z = −10 nm. Now, turn-
ing to analyzing Fig. 4(d), where a delta-like doping of
nd = 4.5×1019 cm−3 combines with an applied magnetic
field of 30 T (some experimental and theoretical works
in high magnetic fields [75–77]), a parabolic confinement
appears associated with the second term in the squared
parenthesis of Eq. (5). By comparing the confinement
potentials in Figs. 4(b) and 4(d), it is observed that,
as a first effect, the parabolic potential is responsible for
equalizing in energy the bottom of the three quantum
wells. In this way, the central maximum of the ground
state probability density is reinforced. Additionally, the
three confined states show a blue shift related with the
reinforcement of carrier space confinement; noting an in-
crease in the separation in energy between the ground
state and the first excited state. The probability density
of the second excited state now appears with three max-
ima, all of them with equal amplitude, reflecting a sys-
tematic disappearance of the influence of potential well
bottom shape. In Figs. 4(b-d), where central doping is
present, it is clearly seen that in the three cases there are
only three confined levels with energies lower than the
Fermi level.
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FIG. 5: (color online) Variation of the lowest three energy
separations in a central doped GaAs Razavy-like quantum
well as a function of the applied electric (a) and magnetic (b)
field. Calculations are for nd = 4.5× 1019 cm−3.

In Fig. 5, we present the results for the variation of
the lowest three energy separations (E2 − E1, E3 − E1,
and E3 − E2) in a central doped GaAs Razavy-like QW
as a function of the applied electric field, without mag-
netic field effects, Fig. 5(a), and as a function of the
applied magnetic field, without electric field effects, Fig.
5(b). The simulations include a fixed delta-like doping
concentration, nd = 4.5×1019 cm−3. The results in Figs.
5(a) and 5(b) are in complete agreement with those pre-
sented in Figs. 4(c) and 4(d), respectively. The electric
field -variable in Fig. 5(a)- has the function of tilting the
potential well profile, generating a greater localization of
the carriers towards the z < 0 region. This effect trans-
lates into greater confinement of the carriers, thereby in-
creasing the separation between the confined levels and
consequently the transition energies. The quasi-parallel
behavior of the E2 − E1 and E3 − E1 curves justifies
the quasi-constant behavior with the electric field of the
E3−E2 curve which, in the whole range of electric fields
considered, only presents a variation of 8 meV; less than
10%. It is important to note that the wave functions as-
sociated to the three states in Fig. 5(a) lose their odd or
even symmetry with respect to the z = 0 point, which
means that all inter-subband transitions are allowed. As
commented, the magnetic field -the variable in Fig. 5(b)-
is responsible for a parabolic potential whose effect is to
increase the localization of all confined states within the
region close to z = 0. This greater localization of the
states translates into an increase in the transition ener-
gies with the applied magnetic field. Due to its greater
extension in space, the second excited state (Φ3) is the
one most susceptible to being spatially modified by the
effect of the applied magnetic field. The ground state
(Φ1), which has its maximum probability density close
to the z = 0 region, is essentially insensitive to the ef-
fects of the magnetic field. Combining these two aspects,
one may understand why, as in Fig. 5(a), the E2−E1 and
E3 −E1 transition energies are the most sensitive to the

magnetic field, with a growing behavior and parallel to
each other. This justifies that in the range of magnetic
fields, the E3 − E2 transition energy is constant. The
wave functions associated with the three states consid-
ered in the transitions of Fig. 5(b) preserve their even or
odd symmetries. The Φ1 and Φ3 states are even functions
concerning z = 0 while the Φ1 state is an odd function.
Consequently, only the 1 → 2 and 2 → 3 transitions are
allowed whereas the 1→ 3 transition is forbidden.
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FIG. 6: (color online) Variation of the reduced dipole ma-
trix elements-|Mif |2 (a), the occupancy ratio-σif (b), and the
function Fif = σif |Mif |2 (Ef − Ei) (c) in a central doped
GaAs Razavy-like quantum well as a function of the applied
electric field, for zero magnetic field. The results are for
nd = 4.5× 1019 cm−3.
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FIG. 7: (color online) Variation of the reduced dipole ma-
trix elements-|Mif |2 (a), the occupancy ratio-σif (b), and the
function Fif = σif |Mif |2 (Ef − Ei) (c) in a central doped
GaAs Razavy-like quantum well as a function of the ap-
plied magnetic field for zero electric field. The results are
for nd = 4.5× 1019 cm−3.

In Figs. 6 and 7 we present the variation of the re-
duced dipole matrix elements-|Mif |2 (a), the occupancy
ratio-σif (b), and the function Fif = σif |Mif |2 (Ef−Ei)
(c) in a central doped GaAs Razavy-like QW, plotted as
functions of the applied electric field, for zero magnetic
field; and as functions of the applied magnetic field, for
zero electric field, respectively. The results correspond to
a delta-like doping with nd = 4.5×1019 cm−3. As already
said before, since the presence of an electric field removes
the even or odd symmetry of the confined states then all
the transitions between lowest three confined states are
allowed, as shown in Fig. 6(a). therefore all correspond-
ing intersubband |Mif |2 elements are nonzero. However,
as seen from Fig. 7(a), since the ground and the second
excited states are even functions, then M2

13 = 0.

Taking into account that both the electric and mag-
netic fields have the effect of increasing the location of
carriers, then the spatial extension where the wave func-
tions spread out decreases. This explains the decreasing
tendency of the reduced dipole matrix elements in Figs.
6(a) and 7(a) as functions of the electric and magnetic
fields, respectively. An unexpected situation occurs with
the term M2

23 in Fig. 7(a). Its growing character with
the magnetic field is essentially associated with the in-

creasing spatial overlap of Φ2 and Φ3 states. Note that
the magnetic field is responsible for the increment (decre-
ment) of the probability density of Φ3 state in the region
where Φ2 has its two maxima values (has its minimum
value). From Fig. 6(a) it is also possible to observe that
the term M2

13 is approximately zero over the entire range
of electric fields. Despite the symmetry breaking in the
wave functions, the Fig. 4(a) shows that the electric field
shifts the only maximum present in the Φ1 state towards
the region where Φ3 has a minimum. For this reason, the
overlap between these two wave functions tends to zero,
giving an approximately negligible value of the dipole
matrix element. From the increasing behavior of σ12 and
σ13 and approximately constant of σ23 in Figs. 6(b) and
7(b), it is concluded that in general the energy separation
between the Φ2 and Φ3 states is approximately constant
with the electric and magnetic fields and that the tran-
sition energy between Φ1 and Φ2 (or between Φ1 and
Φ3) is an increasing function of the electric and mag-
netic fields. As the strength of the two external probe
fields augments, an increase in confinement is observed,
greater spacing between levels appears; and it is much
more difficult to thermally excite the electrons from the
ground to excited states. This explains why there is an
increase in the occupancy rate with the electric and mag-
netic field. Figs. 6(c) and 7(c), where we present the
function Fif = σif |Mif |2 (Ef −Ei), show quite intricate
mixing behavior of the three factors involved, which can
be summarized as follows. For the electric field effects in
Fig. 6(c), it is observed that: i) F12 and F13 are dom-
inated by the behavior of their corresponding σif and
Ef −Ei parameters and ii) F23 is dominated by the be-
havior of M2

23. In the case of Fig. 7(c), the nonzero F12

and F23 functions increase with the magnetic field and
essentially follow the transition energy behavior.
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FIG. 8: (color online) Variation of the total optical absorption
coefficient in a central doped GaAs Razavy-like quantum well
as a function of the z-polarized incident photon energy for
three different values of the applied electric field, for zero
magnetic field (a) and for three values of the applied magnetic,
for zero electric field (b). The results are for nd = 4.5 ×
1019 cm−3.

In Fig. 8 we present the variation of the total opti-
cal absorption coefficient in a central δ-like doped GaAs
Razavy-like QW as a function of the z-polarized inci-
dent photon energy for three different values of the ap-
plied electric field, with B = 0 (a) and for three values
of the applied magnetic, with F = 0 (b) and keeping
constant the nd concentration. According to Eq. (11),
the magnitude of the first-order correction resonant peak
of the optical absorption coefficient is proportional to
Fif = |M2

if σif (Ef − Ei) which is precisely the quantity

reported in Figs. 6(c) and 6(c). The incident radiation
intensity chosen in this study is I = 0.5 MW/cm2 and,
under such assumption, a clear dominance of the linear
contribution to the total light absorption is present. Note
that the magnitude of the maxima of αij in all the curves
of Fig. 8 follow the behavior of Fij reported in Figs. 6
and 7. For example, in Fig. 6(c), we can see that F23

decreases with the electric field, a situation that is iden-
tical to the decrease of the resonant peak of α23 in the
three corresponding curves in Fig. 8(a) as it increases the
electric field. The almost constant behavior of the mag-
nitude of the resonant peak of α23 in Fig. 8(b) is directly
related to the slight variation shown by F23 in Fig. 7(c).
The absence of the α13 coefficient in Fig. 8(b) for all
the magnetic fields strengths considered and in Fig. 8(a)
for F = 0 is since the α13 transitions are forbidden be-
tween states that have the same even symmetry. As men-
tioned, in general, the electric and magnetic fields used
as external probes in this study are responsible for the
increase in carriers’ confinement, which finally translates
into a greater spacing between adjacent levels and con-
sequently in an increase in the transition energies. This
fact is in perfect coherence with the blue shift shown by
the resonant peaks of the total absorption coefficient as
the electric field increases, as shown in Fig. 8(a), or as

the magnetic field increases, as shown in Fig. 8(b).
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FIG. 9: (color online) Variation of the reduced dipole ma-
trix elements-|Mif |2 (a), the occupancy ratio-σif (b), the
transition energies-Ef − Ei (c), and the function Fif =
σif |Mif |2 (Ef −Ei) (d) in a central doped GaAs Razavy-like
quantum well as a function of the nd-doping concentration.
The results are for F = 0 and B = 0.

In Fig. 9 we present the variation of the reduced dipole
matrix elements (a), the occupancy ratio (b), the tran-
sition energies (c), and the Fif -function (d) in a central
δ-like doped GaAs Razavy-like QW as a function of the
doping volume concentration for zero electric and mag-
netic field. As shown in Fig. 4(b), central doping cre-
ates a potential well in the center of the structure, giving
rise to a system of three coupled wells in the Razavy-
like double quantum well system studied here. When
nd = 4.5×1019 cm−3, see Fig. 4(b), it is observed that the
central well, where doping exists, has its minimum with
energy slightly higher than the original two minimums
of the Razavy-like double quantum well. As nd grows
from that value, the two potential barriers that separate
the wells decrease in their heights until they finally col-
lapse, and the system evolves from three potential wells
to a single QW that drags the ground state successively
towards lower energies. This effect is responsible for the
increasing behavior of the E2−E1 and E3−E1 transition
energies in Fig. 9(c). The central potential well, with in-
creasing nd, confines within it the Φ1 and Φ2 states, with
which an increasing behavior appears reinforced by the



11

confinement of the E2 − E1 transition energy. This fact
justifies that the slope with nd of the E2 −E1 transition
is higher than that exhibited by E3−E1, which explains
the decreasing character of the E3 − E2 transition. As
the Φ1 and Φ2 states are confined in the central well, a
greater localization oaround z = 0 gives rise to the di-
minishing character of M2

12 in Fig. 9(a). Due to the
increment in the localization of Φ2 close to z = 0 and
that the spatial extension of Φ3 shows negligible changes
with the increase of nd, the augmenting character of M2

23

is justified. The variations of σif in Fig. 9(b) exactly
follow the behavior of Ef − Ei as previously justified.
Fig. 9(d) shows unequivocally that in the Fif function,
the dominant factors are the transition energies and the
occupancy ratio.
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FIG. 10: (color online) Variation of the total optical absorp-
tion coefficient α12 and α23 in a central doped GaAs Razavy-
like quantum well as a function of the incident photon energy
for three different values of the nd-doping concentration. The
results are for F = 0 and B = 0.

Figure 10 contains our results for the variation of the
total optical absorption coefficient α12 and α23 in the in-
vestigated GaAs Razavy-like QW with on-center delta-
like doping, plotted as a function of the incident photon
energy for three different values of the nd-doping concen-
tration in the absence of any external field. The absence
of the α13 transitions is justified by the symmetric nature
of the structure, in which case both the ground state and
the second excited state are even functions between which
the dipole matrix element is zero. The red/blue shift of
α12/α23 is explained by the results in Fig. 9(c). Like-
wise, Fig. 9(d) justifies the variations in the magnitudes
of the resonant structures and again makes it possible to
argue that the first order correction is the dominant one
in the optical absorption coefficient.

B. Results Quantum Wire

In this subsection, we present the results of calculations
for the two-dimensional QWR system with a Razavy po-
tential as described in section 2. As in the previous case,

the following parameters have been set: effective mass of
electron in GaAs m∗ = 0.067m0, where m0 is the mass of
the free electron and dielectric constant εr = 12.9. Cou-
pled differential equations have been solved by means of
the finite element method with the following setup: in-
ner mesh with triangular shaped elements, number of ele-
ments 6550, edge elements 160, mesh vertices 3356, max-
imum number of iterations for Self-consistent method 40,
absolute tolerance for Self-consistent method 10−6.

FIG. 11: (color online) Variation of the total optical absorp-
tion coefficient α12 and α23 in a central doped GaAs Razavy-
like quantum well as a function of the incident photon energy
for three different values of the nd-doping concentration. The
results are for F = 0 and B = 0.

Figure 11 shows the self-consistently determined con-
finement potential for three different radii, rd, for the
GaAs QWR: rd = 5 nm (a), rd = 10 nm (b), and
rd = 15 nm (c). Calculations are with R0 = 50 nm,
T = 10K, and Nd = 3 × 1019 cm−3. The red color in
each figure indicates larger values for the potential, while
the blue color indicates the smaller values for it. For the
three cases studied, the self-consistent potential presents
a stable equilibrium point at x = 0 (center of symmetry of
the system), which corresponds to a minimum potential
and therefore, the electrons will be practically confined
around the central region of the QW, feeling an infinite
potential at the system boundary. For rd = 5 nm, the
potential presents a very sharp peak near the center of
the structure generated by the rearrangement of charges.
Such a charge distribution practically resembles a delta
type doping in the system, given the very small value of
rd compared to the total radius of the wire R0. For the
larger radii of the on-center doping region the sharp peak
no longer appears. Instead, the profile shows a flatter
bottom around the center of symmetry. However, in all
cases, these lower structures correspond to smaller values
of the potential energy, compared to the entire cross sec-
tion of the QW. This indicates that electrons will tend
to localize towards the interior this central region.
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FIG. 12: Projection in the x direction of the self-consistent
potential for the three doping radio rd studied, 5, 10 and
15 nm. The black curve corresponds to the Razavy poten-
tial inside QW, included as a reference (a). Self-consistent
electron densities corresponding to each of the potentials pre-
sented in (a) maintaining the same projection direction in the
x direction (b). Calculations are with R0 = 50 nm, T = 10K,
and Nd = 3× 1019 cm−3.

In the Fig. 12(a) we plot the projection along the x di-
rection of the self-consistent potential for the three values
of doping radii rd considered: 5, 10 and 15 nm. The black
curve corresponds to the Razavy potential inside QWR,
which is included as a reference. Calculations consider
R0 = 50 nm, T = 10K, and Nd = 3×1019 cm−3. Vertical
bars indicate the different doping radii, rd. The poten-
tial reaches a minimum value of -0.49 eV, for rd = 5 nm,
followed that with rd = 15 nm, where the minimum is
at -0.32 eV and, finally, when rd = 10 nm the minimum
is -0.28 eV. The value of these minima is crucial for the
positioning of the electronic states as well as to quantify
their contribution to the electron density in the system.
In the regions close to the QWR boundary, all potentials
converge to a single value of 1.72 eV which corresponds
to the sum of the potential due to the Fermi level Pin-
ning in GaAs which is 0.7 eV plus the Razavy potential
at the boundary that is equal to 1.02 eV. That is, the
potential at the boundary is not modified by the effect
of the doped delta layer in the central region of the wire.
Note the similarity of the black curve that corresponds
to the projection of the Razavy potential on the x-axis
with the potential presented in Figure 4(a) (blue curve)
for the one-dimensional QW.

Figure 12(b) shows the electron density for each con-
figuration of the system. Due to the symmetry of these
quantities, they have are plotted only from the center of
the structure towards the border. The colors on each
curve exactly match to each of the potentials in Fig.
12(a). The electron density that reaches the maximum
value is that corresponding to rd = 5 nm, which is, pre-
cisely, the cylindrical delta-doping region with the small-
est radius. In this case, electrons are confined within a
circular cross-section that does not exceed 20 nm in diam-

eter, and the behavior of electron density is completely
decreasing as we move away from the center of symmetry
of the system. For the radii rd = 10 nm and rd = 15 nm,
the densities decrease in magnitude, having a distribu-
tion along the cross section of the wire with diameters
not greater than 30 nm and 40 nm respectively. The sys-
tem that reaches the lowest magnitude in electron density
is the system with rd = 10 nm, which, as described be-
fore, corresponds to the highest potential in the center
of the system. It should be noted that density profiles
generated for rd = 10 nm and 15 nm are not always to-
tally decreasing, but exhibit the so-called Friedel-like os-
cillations, which appear as irregularities in the electron
density near the center of symmetry of the system.
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FIG. 13: First energy levels for a confined electron in a GaAs
quantum wire as a function of the rd parameter. The in-
set shows a zoom for rd values between 5 nm and 10 nm.
Calculations are with R0 = 50 nm, T = 10K, and Nd =
3× 1019 cm−3.

Figure 13 shows the first energy levels for a confined
electron in a GaAs QWR as functions of the rd parame-
ter. The inset shows a zoom for rd values between 5 nm
and 10 nm. Calculations correspond to R0 = 50 nm,
T = 10K, and Nd = 3× 1019 cm−3. For all states there
is a clear monotonous decreasing behavior. For rd val-
ues smaller than 2.5 nm, the states presented are very
close to each other around an average value of 0.72 eV.
For rd values bigger than 2.5 nm, the states present a
considerable separation and there are crossovers between
some excited states. The inset shows the region 5 nm
< rd <10 nm in which it is possible to clearly observe
some of these crossovers between states, with double or
even triple degenerations occurring at specific points. For
rd values greater than 20 nm, the states again tend to be
closer together due to the distribution of charges along
the cross section of the wire.



13

5 10 15 20 25 30

0.68

0.70

0.72

0.74
en

er
gy

 (e
V)

Nd (1018 cm-3)

FIG. 14: First energy levels for a confined electron in a GaAs
quantum wire as a function of the Nd parameter. Calculations
are with R0 = 50 nm, rd = 2 nm, and T = 10K.

The plot in Figure 14 shows the lowest energy levels for
a confined electron in a GaAs QWR as a function of the
Nd parameter. Results presented are for R0 = 50 nm,
rd = 2 nm, and T = 10K. With this setup, all states
present a parallel and approximately linear behavior, ex-
isting degeneration of order two for all the states except
for the ground one. It should be noted that, unlike Fig.
13 in which the rd is varied, there are no longer any
crossovers between the states. Note that the first excited
state and the ground state present very close energies,
with a separation of approximately 0.7 meV, whilst the
other excited states exhibit a more notable separation.
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FIG. 15: Electron density and |ψi(x, y = 0)|2 that contribute
with the highest percentage to the density profile at the points
marked with the dashed lines. Results are for rd = 5 nm (a),
rd = 10 nm (b), and rd = 15 nm (c) QW. Calculations are
with R0 = 50 nm, T = 10K, and Nd = 3× 1019 cm−3.

The electron density appears in Fig. 15 as a function
of the distance from the QWR center (along the x direc-
tion), together with the those quantities, |ψi(x, y = 0)|2,
that contribute with the highest percentage to the den-
sity profile at the points marked with the dashed lines.
Results correspond for rd = 5 nm (a), rd = 10 nm (b),
and rd = 15 nm (c) QWR. Calculations were performed
with R0 = 50 nm, T = 10K, and Nd = 3× 1019 cm−3.

In Fig. 15(a) the projection of the electron density
along the x direction is presented for rd = 5 nm and, for
this configuration, there are no oscillations in the den-
sity profile. The dashed line corresponds to the point at
which the percentage contribution of each of the states
of the system to the total electron density has been cal-
culated. This contribution is presented in detail in Table
1. For this first system, the electron density profile is
due only to the contribution of four states. the highest
contribution is due to the ground state ψ0 with 73.1%
corresponding to the red curve in Fig. 15(a), followed
by state ψ3 with 25.1%. No Friedel-like oscillations are
present in this case. Fig. 15(b) contains the electron
density profile for rd = 10 nm and the states that present
a contribution greater than 10% at the point x = 2.1 nm
marked with the dashed line. For the total electron
density, a contribution of eight states is present as re-
ported in Table 1. Again, the state that has a greater
contribution is ψ0, with 42.8%, and corresponds to the
red curve in the figure. It is followed by the state ψ5

which is already a higher state with 21.2% and later the
state ψ1 with 17.8%. The appearance of this oscillation
is mainly due to the occupation of the lowest states in
the system (ψ0 and ψ1) with a contribution greater than
60%. Fig. 15(c) presents the electron density profile for
rd = 15 nm, together with the probability densities of
states that present a contribution greater than 9% to the
electron density at the point x = 4.3 nm -marked with
the dashed line. Comparing with figures (a) and (b),
in this case the first oscillation appears further from the
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center of symmetry of the system. It should be noted
that the electron density for this case contains contribu-
tions from thirty states, however, none of them exceeds
the 19% contribution to this Friedel-like oscillation as ev-
idenced in Table 1. The state that contributes the most
(state with the highest occupancy at this specific point)
is one of the higher states, ψ8, with 18.5% followed by
the ground state, ψ0, with 15.1%. The Table 1 does not
include states with a contribution lower than 1%. Com-
paring the three values of rd and the data collected in
Table 1, it is possible to conclude that as the value of
rd augments, the ground state ceases to be the predom-
inant state in terms of occupancy. Instead, a significant
contribution from the highest states in the system will
occur.

Contribution by state (%)
rd (nm) ⇒ 5 10 15

ψ0 73.1 42.8 15.1
ψ1 0.5 17.8 13.2
ψ2 1.3 0.3 1.7
ψ3 25.1 1.0 1.6
ψ4 0.9 3.0
ψ5 21.2 6.0
ψ8 12.3 18.5
ψ9 3.7 4.2
ψ12 9.4
ψ13 2.7
ψ18 3.3
ψ19 7.9
ψ20 1.8
ψ25 4.8
ψ26 3.2
ψ27 1.2

TABLE I: Contribution in percentage of each of the states to
the oscillations in the density profile presented in figure 15.
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FIG. 16: Projection of the self-consistent potential in the x
direction considering two different doping zones, the black
curves correspond to a central cylinder-shaped doping, as in-
dicated by the dark vertical column, the red curves correspond
to a cylindrical ring-shaped doping such as show the two light
red columns. The dashed lines are for Nd = 1 × 1018 cm−3

and the solid lines are for Nd = 5 × 1018 cm−3. The inset
shows the electron density obtained for Nd = 5× 1018 cm−3.
Calculations are with R0 = 50 nm, rd = 5 nm, and T = 10K.

Finally, in order to have a comparison about the ef-
fect of doping geometry on the self-consistent potential
in the cylindrical Razavy-like QWR, Fig. 16 shows the
projection of the self-consistent potential along the x di-
rection considering two different doping zones, the black
curves correspond to a central cylinder-shaped doping,
as indicated by the dark vertical column, the red curves
correspond to a cylindrical ring-shaped doping (the two
light red columns in the figure indicate the cross section
of the ring in the xz plane, the columns are centered at
x = −30 nm and x = 30 nm respectively). The dashed
lines are for Nd = 1 × 1018 cm−3 and the solid lines are
for Nd = 5 × 1018 cm−3. The inset shows the electron
density obtained for Nd = 5 × 1018 cm−3. Calculations
are with R0 = 50 nm, rd = 5 nm, and T = 10K. When
the doping corresponds to the central cylinder, that is, to
the black curves, one observes that when the density of
donors in the system increases, there is a considerable de-
crease of the potential in the central zone. This is much
more significant when the doping is included in a region
with the shape of a cylindrical ring (red curves), where
the potential is lowered by an average of 0.5 eV in the re-
gions between -30 nm and 30 nm. It should be noted that
in the latter case there is no longer a specific decrease in
the central area, that is, the repulsive character is not
lost in the center of symmetry. Analyzing the continuous
black curve it is possible to realize that, for higher donor
densities, the dominant potential in the system will be
the potential due to the redistribution of charges, that
is, the Hartree potential and the Razavy potential loses
significance. Therefore, when the density of donors ac-
cumulates in a central cylinder, the self-consistent elec-
tron density will be very sensitive to the magnitude of
these donors since they can drastically modify the po-
tential profile. The opposite case occurs when the donor
density accumulates in a cylindrical ring. There, as the
donor density increases, the dominant potential remains
the Razavy one, and the Hartree potential only gener-
ates a decrease in magnitude of the potential without
drastically modifying the shape. The inset in Fig. 16
shows the electron density for Nd = 5 × 1018 cm−3 for
the system with cylindrical ring doping. By comparing
this result with the one presented in Fig. 12(b), we see a
totally different profile in which the electrons accumulate
mostly in the area of doped ring and, despite being at a
low temperature, no Friedel-like oscillations are present.
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IV. CONCLUSIONS

By using the effective mass and parabolic band ap-
proximations, the finite difference method, as well as a
self-consistent calculation, we have investigated the fea-
tures of total optical absorption coefficient of confined
electrons in a delta-like doped Razavy-like quantum well
under the combined effects of externally applied electric
and magnetic field. In the absorption peaks, a clear blue
shift is evidenced for all the transitions studied, keep-
ing the donor density fixed, the shift being more signifi-
cant for changes in the electric field than in the magnetic
field, in all cases a change in the magnitude of the optical
absorption peaks is presented. The transition with the
greatest resistance to modifications due to external fields
is α23. On the other hand, with the increase in donor
density, red and blue shifts of the absorption peaks were
also reported, as well as a decrease in their magnitude
depending on the transition studied. This allows us to
tune the system without modifying geometric parame-
ters directly, only applying external fields or increasing
the density of donors to obtain the maximum absorption
of the material in the positions that are required for a
certain application.

On the other hand, the delta-doping effect on electron
states has been analyzed in quantum wire systems with
exposed borders and circular cross-section subjected to
an internal Razavy-like potential at low temperatures.
Effects of varying geometric parameters such as the width
of delta-doped layer, and not geometric as the density of
donors in the system have been studied. In both cases
a decrease in the magnitude of all electronic states has
been found both with the increase of rd and Nd. The ap-
pearance of irregularities in the electron density profile
has been reported for rd = 10 nm and 15 nm, these oscil-
lations are Friedel-like and have been explained by means
of the occupation of the electronic states of the system.
We hope that this research will stimulate future investi-
gations related to intentional doping in low-dimensional
semiconductor heterostructures.
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