1 Li, Q. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine 382, 1199-1207, doi:10.1056/NEJMoa2001316 (2020).
2 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
3 McMichael, T. M. et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. The New England journal of medicine 382, 2005-2011, doi:10.1056/NEJMoa2005412 (2020).
4 WHO. WHO Coronavirus Disease (COVID-19) Dashboard, <https://covid19.who.int/> (2020).
5 Pompeii, L. A. et al. Training and Fit Testing of Health Care Personnel for Reusable Elastomeric Half-Mask Respirators Compared With Disposable N95 Respirators. Jama 323, 1849-1852, doi:10.1001/jama.2020.4806 (2020).
6 Lan, L. et al. Positive RT-PCR Test Results in Patients Recovered From COVID-19. Jama 323, 1502-1503, doi:10.1001/jama.2020.2783 (2020).
7 Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine 382, 1708-1720, doi:10.1056/NEJMoa2002032 (2020).
8 Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England) 395, 507-513, doi:10.1016/S0140-6736(20)30211-7 (2020).
9 Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779-782, doi:10.1126/science.abb7498 (2020).
10 Fosbol, E. L. et al. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With COVID-19 Diagnosis and Mortality. JAMA 324, 168-177, doi:10.1001/jama.2020.11301 (2020).
11 Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research 30, 269-271, doi:10.1038/s41422-020-0282-0 (2020).
12 Cao, B. et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. The New England journal of medicine 382, 1787-1799, doi:10.1056/NEJMoa2001282 (2020).
13 Grein, J. et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. The New England journal of medicine 382, 2327-2336, doi:10.1056/NEJMoa2007016 (2020).
14 Borba, M. G. S. et al. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA network open 3, e208857, doi:10.1001/jamanetworkopen.2020.8857 (2020).
15 Gao, J., Tian, Z. & Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends 14, 72-73, doi:10.5582/bst.2020.01047 (2020).
16 Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151, 264-269, W264, doi:10.7326/0003-4819-151-4-200908180-00135 (2009).
17 Higgins, J. P. et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed.) 343, d5928, doi:10.1136/bmj.d5928 (2011).
18 DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control Clin Trials 7, 177-188, doi:10.1016/0197-2456(86)90046-2 (1986).
19 Higgins, J., Thompson, S., Deeks, J. & Altman, D. Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy 7, 51-61, doi:10.1258/1355819021927674 (2002).
20 Higgins, J. P., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed.) 327, 557-560, doi:10.1136/bmj.327.7414.557 (2003).
21 Felice, C. et al. Use of RAAS inhibitors and risk of clinical deterioration in COVID-19: results from an Italian cohort of 133 hypertensives. American journal of hypertension, doi:10.1093/ajh/hpaa096 (2020).
22 Meng, J. et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerging microbes & infections 9, 757-760, doi:10.1080/22221751.2020.1746200 (2020).
23 Yang, G. et al. Effects of Angiotensin II Receptor Blockers and ACE (Angiotensin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center Retrospective Study. Hypertension (Dallas, Tex. : 1979) 76, 51-58, doi:10.1161/HYPERTENSIONAHA.120.15143 (2020).
24 Hu, J. et al. COVID-19 patients with hypertension have more severity condition, and ACEI/ARB treatment have no infulence on the clinical severity and outcome. The Journal of infection, doi:10.1016/j.jinf.2020.05.056 (2020).
25 Li, J., Wang, X., Chen, J., Zhang, H. & Deng, A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol 5, 825-830, doi:10.1001/jamacardio.2020.1624 (2020).
26 Zhang, P. et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res 126, 1671-1681, doi:10.1161/CIRCRESAHA.120.317134 (2020).
27 Gao, C. et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. European heart journal 41, 2058-2066, doi:10.1093/eurheartj/ehaa433 (2020).
28 Davoudi-Monfared, E. et al. A Randomized Clinical Trial of the Efficacy and Safety of Interferon beta-1a in Treatment of Severe COVID-19. Antimicrob Agents Chemother 64, doi:10.1128/AAC.01061-20 (2020).
29 Hung, I. F. et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet (London, England) 395, 1695-1704, doi:10.1016/S0140-6736(20)31042-4 (2020).
30 Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet (London, England) 395, 1569-1578, doi:10.1016/S0140-6736(20)31022-9 (2020).
31 Beigel, J. H. et al. Remdesivir for the Treatment of Covid-19 - Preliminary Report. The New England journal of medicine, doi:10.1056/NEJMoa2007764 (2020).
32 Olender, S. A. et al. Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of Care. Clin Infect Dis, doi:10.1093/cid/ciaa1041 (2020).
33 Li, Y. et al. Efficacy and Safety of Lopinavir/Ritonavir or Arbidol in Adult Patients with Mild/Moderate COVID-19: An Exploratory Randomized Controlled Trial. Med (N Y), doi:10.1016/j.medj.2020.04.001 (2020).
34 Spinner, C. D. et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 324, 1048-1057, doi:10.1001/jama.2020.16349 (2020).
35 Ivashchenko, A. A. et al. AVIFAVIR for Treatment of Patients with Moderate COVID-19: Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clin Infect Dis, doi:10.1093/cid/ciaa1176 (2020).
36 Geleris, J. et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. The New England journal of medicine 382, 2411-2418, doi:10.1056/NEJMoa2012410 (2020).
37 Cavalcanti, A. B. et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. The New England journal of medicine, doi:10.1056/NEJMoa2019014 (2020).
38 Tang, W. et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ (Clinical research ed.) 369, m1849, doi:10.1136/bmj.m1849 (2020).
39 Gautret, P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents 56, 105949, doi:10.1016/j.ijantimicag.2020.105949 (2020).
40 Paccoud, O. et al. Compassionate use of hydroxychloroquine in clinical practice for patients with mild to severe Covid-19 in a French university hospital. Clin Infect Dis, doi:10.1093/cid/ciaa791 (2020).
41 Elavarasi, A. et al. Chloroquine and Hydroxychloroquine for the Treatment of COVID-19: a Systematic Review and Meta-analysis. J Gen Intern Med, doi:10.1007/s11606-020-06146-w (2020).
42 Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 81, 537-540, doi:10.1002/ddr.21656 (2020).
43 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020).
44 Chorin, E. et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med 26, 808-809, doi:10.1038/s41591-020-0888-2 (2020).
45 Chorin, E. et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart rhythm 17, 1425-1433, doi:10.1016/j.hrthm.2020.05.014 (2020).
46 Zhang, J. et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. The Lancet. Respiratory medicine 8, e11-e12, doi:10.1016/S2213-2600(20)30071-0 (2020).
47 Zhang, X., Yu, J., Pan, L. Y. & Jiang, H. Y. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: A systematic review and meta-analysis. Pharmacological research 158, 104927, doi:10.1016/j.phrs.2020.104927 (2020).