1. Rizvi S and Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013; 145: 1215-29.
2. Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012; 61: 1657-69.
3. Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. Journal of hepatology. 2014; 60: 1268-89.
4. Razumilava N and Gores GJ. Cholangiocarcinoma. Lancet (London, England). 2014; 383: 2168-79.
5. Skipworth JR, Olde Damink SW, Imber C, Bridgewater J, Pereira SP and Malagó M. Review article: surgical, neo-adjuvant and adjuvant management strategies in biliary tract cancer. Alimentary pharmacology & therapeutics. 2011; 34: 1063-78.
6. Torgeson A, Lloyd S, Boothe D, et al. Chemoradiation Therapy for Unresected Extrahepatic Cholangiocarcinoma: A Propensity Score-Matched Analysis. Annals of surgical oncology. 2017; 24: 4001-8.
7. Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G and Labianca R. Cholangiocarcinoma. Critical reviews in oncology/hematology. 2017; 116: 11-31.
8. Rizvi S, Borad MJ, Patel T and Gores GJ. Cholangiocarcinoma: molecular pathways and therapeutic opportunities. Seminars in liver disease. 2014; 34: 456-64.
9. Alhazzazi TY, Kamarajan P, Verdin E and Kapila YL. SIRT3 and cancer: tumor promoter or suppressor? Biochimica et biophysica acta. 2011; 1816: 80-8.
10. Xiong Y, Wang M, Zhao J, Han Y and Jia L. Sirtuin 3: A Janus face in cancer (Review). International journal of oncology. 2016; 49: 2227-35.
11. Liu H, Li S, Liu X, Chen Y and Deng H. SIRT3 Overexpression Inhibits Growth of Kidney Tumor Cells and Enhances Mitochondrial Biogenesis. Journal of proteome research. 2018; 17: 3143-52.
12. Lee JJ, van de Ven RAH, Zaganjor E, et al. Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115: 7057-62.
13. Wang S, Li J, Xie J, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene. 2018; 37: 4164-80.
14. Xu LX, Hao LJ, Ma JQ, Liu JK and Hasim A. SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase. Molecular and cellular biochemistry. 2020; 464: 11-20.
15. Xu L, Li Y, Zhou L, et al. SIRT3 elicited an anti-Warburg effect through HIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma tumorigenesis. Cancer medicine. 2019; 8: 2380-91.
16. Vander Heiden MG, Cantley LC and Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY). 2009; 324: 1029-33.
17. Warburg O. On the origin of cancer cells. Science (New York, NY). 1956; 123: 309-14.
18. Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer cell. 2011; 19: 416-28.
19. Ryan HE, Lo J and Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. The EMBO journal. 1998; 17: 3005-15.
20. Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. The American journal of pathology. 2000; 157: 411-21.
21. Dales JP, Garcia S, Meunier-Carpentier S, et al. Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. International journal of cancer. 2005; 116: 734-9.
22. Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes & development. 2000; 14: 34-44.
23. Seo KS, Park JH, Heo JY, et al. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene. 2015; 34: 1354-62.
24. Verdin E, Hirschey MD, Finley LW and Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in biochemical sciences. 2010; 35: 669-75.
25. Zhao Y, Yang H, Wang X, Zhang R, Wang C and Guo Z. Sirtuin-3 (SIRT3) expression is associated with overall survival in esophageal cancer. Annals of diagnostic pathology. 2013; 17: 483-5.
26. Torrens-Mas M, Pons DG, Sastre-Serra J, Oliver J and Roca P. SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production. Journal of cellular biochemistry. 2017; 118: 397-406.
27. Cui Y, Qin L, Wu J, et al. SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PloS one. 2015; 10: e0129834.
28. Liu C, Huang Z, Jiang H and Shi F. The sirtuin 3 expression profile is associated with pathological and clinical outcomes in colon cancer patients. BioMed research international. 2014; 2014: 871263.
29. Yu W, Denu RA, Krautkramer KA, et al. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies. The Journal of biological chemistry. 2016; 291: 3268-79.
30. Dong XC, Jing LM, Wang WX and Gao YX. Down-regulation of SIRT3 promotes ovarian carcinoma metastasis. Biochemical and biophysical research communications. 2016; 475: 245-50.
31. Haigis MC, Deng CX, Finley LW, Kim HS and Gius D. SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer research. 2012; 72: 2468-72.
32. Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science (New York, NY). 2010; 327: 1004-7.
33. Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science (New York, NY). 2010; 327: 1000-4.
34. Pant K, Peixoto E, Richard S and Gradilone SA. Role of Histone Deacetylases in Carcinogenesis: Potential Role in Cholangiocarcinoma. Cells. 2020; 9.