1 Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519-525.
2 Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function. Trends in cell biology 2000; 10: 17-24.
3 Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 2018; 173: 371-385.e318.
4 Best SA, De Souza DP, Kersbergen A, Policheni AN, Dayalan S, Tull D et al. Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment. Cell Metab 2018; 27: 935-943.e934.
5 Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. The New England journal of medicine 2015; 373: 123-135.
6 Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nature reviews Cancer 2014; 14: 535-546.
7 Choi EJ, Jung BJ, Lee SH, Yoo HS, Shin EA, Ko HJ et al. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene 2017; 36: 5285-5295.
8 Felip E, Gridelli C, Baas P, Rosell R, Stahel R. Metastatic non-small-cell lung cancer: consensus on pathology and molecular tests, first-line, second-line, and third-line therapy: 1st ESMO Consensus Conference in Lung Cancer; Lugano 2010. Annals of oncology : official journal of the European Society for Medical Oncology 2011; 22: 1507-1519.
9 Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF et al. The Global Burden of Cancer 2013. JAMA oncology 2015; 1: 505-527.
10 Fukazawa T, Guo M, Ishida N, Yamatsuji T, Takaoka M, Yokota E et al. SOX2 suppresses CDKN1A to sustain growth of lung squamous cell carcinoma. Scientific reports 2016; 6: 20113.
11 Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nature reviews Drug discovery 2013; 12: 931-947.
12 Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010; 13: 1713-1748.
13 Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in biochemical sciences 2014; 39: 199-218.
14 Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal 2010; 13: 1679-1698.
15 Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & development 1999; 13: 76-86.
16 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA: a cancer journal for clinicians 2008; 58: 71-96.
17 Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ et al. Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. Cancer discovery 2017; 7: 86-101.
18 Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome research 2012; 22: 436-445.
19 Kim Y, Hammerman PS, Kim J, Yoon JA, Lee Y, Sun JM et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2014; 32: 121-128.
20 Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and cellular biology 2004; 24: 7130-7139.
21 Li C, Gao Z, Li F, Li X, Sun Y, Wang M et al. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma. Scientific reports 2015; 5: 14237.
22 Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Medicinal research reviews 2016; 36: 924-963.
23 Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England journal of medicine 2004; 350: 2129-2139.
24 McCarthy N. Tumorigenesis: oncogene detox programme. Nature reviews Cancer 2011; 11: 622-623.
25 Menegon S, Columbano A, Giordano S. The Dual Roles of NRF2 in Cancer. Trends in molecular medicine 2016; 22: 578-593.
26 Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, NY) 2004; 304: 1497-1500.
27 Perera RM, Bardeesy N. Cancer: when antioxidants are bad. Nature 2011; 475: 43-44.
28 Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clinical cancer research : an official journal of the American Association for Cancer Research 2012; 18: 2443-2451.
29 Rekhtman N, Paik PK, Arcila ME, Tafe LJ, Oxnard GR, Moreira AL et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clinical cancer research : an official journal of the American Association for Cancer Research 2012; 18: 1167-1176.
30 Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 1433-1438.
31 Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nature medicine 2017; 23: 1362-1368.
32 Rotblat B, Melino G, Knight RA. NRF2 and p53: Januses in cancer? Oncotarget 2012; 3: 1272-1283.
33 Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 13568-13573.
34 Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: a cancer journal for clinicians 2017; 67: 7-30.
35 Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer research 2008; 68: 7975-7984.
36 Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal 2010; 13: 1627-1637.
37 Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS chemical biology 2016; 11: 3214-3225.
38 Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nature reviews Cancer 2012; 12: 564-571.
39 Takahashi T, Sonobe M, Menju T, Nakayama E, Mino N, Iwakiri S et al. Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer. Journal of surgical oncology 2010; 101: 500-506.
40 Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 2040-2045.