1. Song, L. F., Zhao, Y., & Ma, M. T. (2017). Research Status of Hydrogen-Induced Delayed Cracking in Martensitic Ultra-High Strength Steel. In Advanced High Strength Steel and Press Hardening: Proceedings of the 3rd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2016) (pp. 36-44).. https://doi.org/10.1142/9789813207301_0006
2. Abass, M. H., Abood, A. N., Alali, M., Hussein, S. K., & Nawi, S. A. (2021). Mechanical Properties And Microstructure Evolution in Arc Stud Welding Joints of AISI 1020 with AISI 316L and AISI 304. Metallography, Microstructure, and Analysis, 1-13.. https://doi.org/10.1007/s13632-021-00744-8
3. Wang, Y., Zhang, K., Guo, Z., Chen, N., & Rong, Y. (2012). A new effect of retained austenite on ductility enhancement in high strength bainitic steel. Materials Science and Engineering: A, 552, 288-294.https://doi.org/10.1016/j.msea.2012.05.042
4. Qiao, Z., Liu, Y., Ning, B. et al. Bainitic transformation behavior of ultra-high strength 30CrNi3MoV steel after experiencing small deformation in the nonrecrystallization austenite region. Journal of Materials Research 28, 2844–2851 (2013). https://doi.org/10.1557/jmr.2013.270
5. Duan, C. Z., & Wang, M. J. (2005). Characteristics of adiabatic shear bands in the orthogonal, cutting of 30CrNi3MoV steel. Journal of materials processing technology, 168(1), 102-106. https://doi.org/10.1016/j.jmatprotec.2004.11.006
6. Qiao, Z. X., Liu, Y. C., Yu, L. M., & Gao, Z. M. (2009). Formation mechanism of granular bainite in a 30CrNi3MoV steel. Journal of Alloys and Compounds, 475(1-2), 560-564. https://doi.org/10.1016/j.jallcom.2008.07.110
7. Hartz-Behrend, K., Marqués, J. L., Forster, G., Jenicek, A., Müller, M., Cramer, H., ... & Schein, J. (2014, November). Stud arc welding in a magnetic field–Investigation of the influences on the arc motion. In Journal of Physics: Conference Series (Vol. 550, No. 1, p. 012003). IOP Publishing.
8. Wu, H., Chang, Y., Guan, Z., Babkin, A., & Lee, B. (2021). Arc shape and microstructural analysis of TIG welding with an alternating cusp-shaped magnetic field. Journal of Materials Processing Technology, 289, 116912.https://doi.org/10.1016/j.jmatprotec.2020.116912
9. Abralov, M. A., MA, A., RU, A., & AT, J. (1977). THE EFFECTS OF ELECTROMAGNETIC ACTION ON THE PROPERTIES AND STRUCTURE OF WELDED JOINTS IN THE 01420 ALLOY.
10. Chen, R., Wang, C., Jiang, P., Shao, X., Zhao, Z., Gao, Z., & Yue, C. (2016). Effect of axial magnetic field in the laser beam welding of stainless steel to aluminum alloy. Materials & Design, 109, 146-152. :https://doi.org/10.1016/j.matdes.2016.07.064
11. Hartz-Behrend, K., Marqués, J. L., Forster, G., Jenicek, A., Müller, M., Cramer, H., ... & Schein, J. (2014, November). Stud arc welding in a magnetic field–Investigation of the influences on the arc motion. In Journal of Physics: Conference Series (Vol. 550, No. 1, p. 012003). IOP Publishing.
12. Zhang, D., Qian, X., Li, X., He, S., & Wang, K. (2021). Effects of welding flux on welding quality during arc stud welding process. Journal of Adhesion Science and Technology, 1-12.https://doi.org/10.1080/01694243.2021.1892425
13. Xu, J., Peng, Y., Guo, S., Zhou, Q., Zhu, J., & Li, X. (2019). Softening Behavior of Electron Beam Welded 22SiMn2TiB Steel. Journal of Materials Engineering and Performance, 28(11), 6669-6681. https://doi.org/10.1007/s11665-019-04366-8
14. Gregg, J. M., & Bhadeshia, H. K. D. H. (1997). Solid-state nucleation of acicular ferrite on minerals added to molten steel. Acta Materialia, 45(2), 739-748. https://doi.org/10.1016/S1359-6454(96)00187-5
15. Kojima, A., Kiyose, A., Uemori, R., Minagawa, M., Hoshino, M., Nakashima, T., ... & Yasui, H. (2004). Super high HAZ toughness technology with fine microstructure imparted by fine particles. Shinnittetsu Giho, 2-5.
16. Leslie W C. The physical metallurgy of steels[M]. American:Hempisphere Publishing Corporation, 1981.
17. Villafuerte, J. C., & Kerr, H. W. (1990). Electromagnetic stirring and grain-refinement in stainless-steel GTA welds. Welding journal, 69(1), S1-S13.
18. Utech, H. P., & Flemings, M. C. (1966). Elimination of solute banding in indium antimonide crystals by growth in a magnetic field. Journal of Applied Physics, 37(5), 2021-2024.
19. Zou, Q., Han, N., Shen, Z., Jie, J., & Li, T. (2018). Effects of AlB2/AlP phase and electromagnetic stirring on impurity B/P removal in the solidification process of Al-30Si alloy. Separation and Purification Technology, 207, 151-157.. https://doi.org/10.1016/j.seppur.2018.06.052
20. Cai, B., Kao, A., Boller, E., Magdysyuk, O. V., Atwood, R. C., Vo, N. T., ... & Lee, P. D. (2020). Revealing the mechanisms by which magneto-hydrodynamics disrupts solidification microstructures. Acta Materialia, 196, 200-209. https://doi.org/10.1016/j.actamat.2020.06.041
21. Liu, P., Zhang, R., Yuan, Y., Cui, C., Zhou, Y., & Sun, X. (2020). Hot deformation behavior and workability of a Ni–Co based superalloy. Journal of Alloys and Compounds, 831, 154618.. https://doi.org/10.1016/j.jallcom.2020.154618