2.3 Preparation of thiophene-pyrazole based C, N- donor ligands (L1-L6)
Substituted thiophene-based enones (α, β-unsaturated ketones) were synthesized by 5-bromothiophene-2-carboxyldehyde and substituted acetophenone with the help of base (sodium hydroxide). The ketones were used for further reaction to getting ligands (L1–L6). Potassium tertiary butoxide added in an alcoholic solution of substituted thiophene-based enones and substituted phenylhydrazine hydrochloride were added and refluxed at 60 ⁰C for 6–7 h in methanol. It gave thiophene-pyrazole-based C, N donor ligands (L1–L6). The reaction scheme for the preparation of thiophene-pyrazole-based C, N- donor ligands is depicted in scheme 1.
2.3.1 3-(5-(5-Bromothiophen-2-yl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl) pyridine (L1)
This ligand (L1) was prepared through the addition of α,β-unsaturated enone (3a) (1.5 mmol) and phenyl hydrazine (123 mg, 1.479 mmol), after 5–6 h reflux; Color: yellowish crystalline solid; Empirical formula: C18H13BrClN3S Yield:79.82% Melting point: 289–292°C Molecular weight:418.74 gm/mol calc.(%):C, 51.63; H, 3.13; N, 10.04; S, 7.66; Found. (%):C, 51.56; H, 3.24; N, 10.39; S, 7.52; m/z(%):417 (100) [M]+, 419 [M + 2]+; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 8.489 (1H, dt, H 4” ),7.284 (1H, S, H 2” ), 7.217 (1H, dt, H 6” ), 7.133 (1H, dt, H 5” ), 6.893 (4H, d, J = 4.0 Hz, H 2’’’,3’”,5’’’,6’’’ ), 6.774 (2H, d, J = 3.6 Hz, H 3,4 ), 5.553 (1H, dd, J 1 = 6.4 Hz, J 2 = 12.4 Hz, H3’ ), 3.917 (1H, dd, J 1 = 12 Hz, J 2 = 18.0 Hz, H 4’a ), 3.447 (1H, dd, J 1 = 6.4 Hz, J 2 = 18.0 Hz, H 4’b ) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 152.08 (C 5’, - Cquat ), 143.63 (C1’’’, -Cquat), 135.11 (C 5, -Cquat), 134.78 (C 4’’’, - Cquat ), 124.94 (C 1’’, - Cquat ), 119.04 (C 2, -Cquat), 109.10 (C 3’, -Cquat ), 42.85 (C 4’, -CH2 ) 153.13 (C 4’’, -CH), 143.07 (C 2’’, -CH), 142.94 (C 6’’, -CH), 129.81 (C 3,4, -CH), 129.06 (C 3’’’,5’’’, -CH), 115.34 (C 5’’, -CH), 110.13 (C 2’’’,6’’’, -CH) [Total signal observed = 15: signal of Cquat and –CH2 = 8, signal of –CH and –CH3 = 7] IR Spectra (KBr, 4000–400 cm–1): 3035 ѵ(= C-H)ar. Stretching, 1604 ѵ(C = C)ar. Stretching, 1504 ѵ(C = N)ar.stretching,1213 ѵ(C-N)ar.stretching, 956 ѵ(C-Br)stretching, 817ѵ(C-CI)stretching, 756 ѵ(= C-H)bending, 678 ѵ(C-H)bending.
2.3.2 5-(5-Bromothiophen-2-yl)-1-(4-chlorophenyl)-3-(3-(trifluoromethyl)phenyl)-4,5-di hydro-1H-pyrazole (L2)
This ligand (L2) was prepared through the addition of α,β-unsaturated enone (3b) (1.5 mmol) and 4- Cl phenyl hydrazine (123 mg, 1.479 mmol), after 5–6 h reflux; Color: yellowish crystalline solid; Empirical formula: C20H13BrClF3N2S Yield: 76.32% Melting point: 278–280°C Molecular weight: 485.75 gm/mol. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.755 (2H, dd, J1 = 4.4 Hz, J2 = 8.0 Hz, H3’’’,5’’’), 7.328 (2H, dd, J1 = 1.6 Hz, J2 = 6.8 Hz, H2’’’,6’’’), 7.263 (1H, S, H2”), 7.043 (3H, dt, H4’’,5”,6’’), 6.899 (1H, d, J = 3.6 Hz, H3), 6.779 (1H, d, J = 3.6 Hz, H4), 5.422 (1H, dd, J1 = 6.4 Hz, J2 = 11.6 Hz, H3’), 3.796 (1H, dd, J1 = 11.6 Hz, J2 = 16.8 Hz, H4’,a), 3.280 (1H, dd, J1 = 6.4 Hz, J2 = 16.8 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 156.16 (C5’, -Cquat), 152.08 (C1’’’, -Cquat), 146.85 (C3’’, -Cquat), 142.04 (C5, -Cquat), 140.15 (C1’’, -Cquat), 128.76 (C4’’’, -Cquat), 112.08 (-CF3, -Cquat), 108.55 (C3’, -Cquat), 107.47(C2, -Cquat), 43.76 (C4’, -CH2) 155.58 (C4’’, -CH), 147.84 (C3’’’,5’’’, -CH), 131.83 (C5’’, -CH), 129.82 (C6’’, -CH), 126.26 (C2’’, -CH), 126.16 (C3, -CH), 124.70 (C4, -CH), 115.45 (C2’’’,6’’’, -CH) [Total signal observed = 18: signal of Cquat and –CH2 = 10, signal of -CH and –CH3 = 8] IR Spectra (KBr, 4000–400 cm− 1): 3252 v(-NH)stret., 2934 v(-CH)stret. Alkane, 2819 v(= CH)stret., 2332 v(-C-N)stret., 1576, 1468 v(C = N), 1222 v(C = C)stret., 1067, 805 v(para substitution), 620, 558 v(C-Cl).
2.3.3 5-(5-Bromothiophen-2-yl)-1-(4-chlorophenyl)-3-(4-(methylthio)phenyl)-4,5-dihydro- 1H-pyrazole(L3)
This ligand (L3) was prepared through the addition of α,β-unsaturated enone (3C) (1.5 mmol) and 4-CH3 phenyl hydrazine (1.5 mmol), after 5–6 h reflux; Color: yellowish crystalline solid; Empirical formula: C20H16BrClN2S2 Yield:79.15% Melting point: 265–270°C Molecular weight: 463.84 gm/mol calc. (%):C, 51.79; H, 3.48; N, 6.04; S, 13.82 Found. (%):C, 51.46; H, 3.53; N, 5.97; S, 13.61; m/z(%):462 (100) [M]+, 464 [M + 2]+; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.640 (2H, d, J = 8.4 Hz, H2’’,6’’), 7.328 (2H, d, J = 8.8 Hz, H3’’’,5’’’), 7.254 (2H, d, J = 8.0 Hz, H2’’’,6’’’), 7.036 (2H, d, J = 9.2 Hz, H3’’,5”), 6.899 (1H, d, J = 4.0 Hz, H3), 6.779 (1H, d, J = 3.6 Hz, H4), 5.422 (1H, dd, J1 = 6.4 Hz, J2 = 11.6 Hz, H3’), 3.796 (1H, dd, J1 = 12 Hz, J2 = 17.2 Hz, H4’a), 3.268 (1H, dd, J1 = 6.4 Hz, J2 = 16.8 Hz, H4’b), 2.536 (3H, S, -SCH3), 13C NMR (100 MHz, DMSO‐d6) δ/ppm:156.13 (C5’, -Cquat), 155.07 (C1’’’, -Cquat), 149.26 (C4’’, -Cquat), 145.90 (C1’’, -Cquat), 144.63 (C5, -Cquat), 132.36 (C4’’’, -Cquat), 129.46 (C2, -Cquat), 115.03 (C3’, -Cquat), 43.69 (C4’, -CH2) 150.48 (C3’’’,5’’’, -CH), 140.44 (C3, -CH), 128.88 (C5’’, -CH), 127.35 (C3’’,5’’, -CH), 126.57 (C2’’,6’’, -CH), 126.24 (C2’’’,6’’’, -CH), 15.46 (-SCH3, -CH3) [Total signal observed = 16 : signal of Cquat and –CH2 = 9, signal of -CH and –CH3 = 7] IR Spectra(KBr, 4000–400 cm–1): 3080 ѵ(= C-H)ar. Stretching, 1604 ѵ(C = C)ar. Stretching, 1481 ѵ(C = N)ar. Stretching, 1319 ѵ(C-N)ar. Stretching, 856 ѵ(C-Br)stretching, 794 ѵ(C-CI)stretching, 725 ѵ(= C-H)bending, 663 ѵ(C-H)bending.
2.3.4 3-(1-(4-bromophenyl)-5-(5-bromothiophen-2-yl)-4,5-dihydro-1H-pyrazol-3yl) pyridine (L4)
This ligand (L4) was prepared through the addition of α,β-unsaturated enone (3d) (1.5 mmol) and 4-NO2 phenyl hydrazine (1.5 mmol), after 5–6 h reflux; Color: yellowish crystalline solid; Empirical formula: C18H13Br2N3S Yield: 80.76% Melting point: 250–254°C Molecular weight: 463.19 gm/mol calc. (%):C, 46.68; H, 2.83; N, 9.07; S, 6.92 Found. (%):C, 46.74; H, 2.81; N, 8.99; S, 6.80 m/z(%):462 (100) [M]+, 464 [M + 2]+ ; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.640 (2H, d, J = 8.4 Hz, H2’’’,6’’’), 7.335 (2H, dt, H4’’,5’’), 7.264 (1H, S, H2’’), 7.043 (1H, dt, H6’’), 6.899 (2H, d, J = 3.6 Hz, H3’’’,5’’’), 6.779 (2H, d, J = 4.0 Hz, H3,4), 5.418 (1H, dd, J1 = 8.4 Hz, J2 = 12.0 Hz, H3’), 3.795 (1H, dd, J1 = 11.2 Hz, J2 = 17.2 Hz, H4’a), 3.267 (1H, dd, J1 = 6.4 Hz, J2 = 16.8 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 153.28 (C5’, -Cquat), 147.73 (C1’’’, -Cquat), 146.83 (C5, -Cquat), 143.71 (C1’’, -Cquat), 140.25 (C4’’’, -Cquat), 128.69 (C2, -Cquat), 111.93 (C3’, -Cquat), 43.68 (C4’, -CH2) 131.77 (C2’’, -CH), 129.77 (C4’’, -CH), 126.46 (C6’’, -CH), 126.26 (C3’’’,5’’’, -CH), 124.70 (C3, -CH), 115.45 (C4, -CH), 115.30 (C5’’, -CH), 110.33 (C2’’’,6’’’, -CH) [Total signal observed = 16: signal of Cquat and –CH2 = 8, signal of -CH and –CH3 = 8]. IR Spectra (KBr, 4000–400 cm–1): 2939 ѵ(= C-H)ar.stretching, 1627 ѵ(C = C)ar.stretching, 1465 ѵ(C = N)ar.stretching, 1311 ѵ(C-N)ar. Stretching, 856 ѵ(C-Br)stretching, 709 ѵ(= C-H)bending, 663 ѵ(C-H)bending.
2.3.5 1-(4-Bromophenyl)-5-(5-bromothiophen-2-yl)-3-(3-(trifluoromethyl)phenyl)-4,5- dihydro-1H-pyrazole (L5)
This ligand (L5) was prepared through the addition of α,β-unsaturated enone (3e) (1.5 mmol) and 4-bromo phenyl hydrazine (1.5 mmol), after 5–6 h reflux; Color: yellowish crystalline solid; Empirical formula: C20H13Br2F3N2S Yield: 81.48% Melting point: 254–259°C Molecular weight: 530.20 gm/mol ; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.783 (1H, S, H2’’), 7.699 (2H, d, J = 8.0 Hz, H3’’’,5’’’), 7.367 (2H, d, J = 8.8 Hz, H2’’’,6’’’), 7.316 (2H, d, J = 8.4 Hz, H4’’,6’’), 7.064 (1H, t, J = 4.4 Hz, H5’’), 7.004 (2H, d, J = 3.6 Hz, H3,4), 5.851 (1H, dd, J1 = 4.8 Hz, J2 = 11.2 Hz, H3’), 3.840 (1H, dd, J1 = 11.6 Hz, J2 = 17.2 Hz, H4’a), 3.260 (1H, dd, J1 = 6.4 Hz, J2 = 12.0 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 152.45 (C5’, -Cquat), 148.58 (C1’’’, -Cquat), 145.15 (C1’’, -Cquat), 144.26 (C3’’, -Cquat), 137.63 (C5, -Cquat), 118.44 (-CF3, -Cquat), 110.51 (C4’’, -Cquat), 107.12 (C3’, -Cquat), 106.94 (C2, -Cquat), 36.34 (C4’, -CH2) 151.94 (C6’’, -CH), 138.10 (C3’’’,5’’’, -CH), 131.52 (C5’’, -CH), 130.07 (C4’’, -CH), 126.41 (C3,2’’, -CH), 125.64 (C4, -CH), 115.45 (C2’’’,6’’’, -CH) [Total signal observed = 17: signal of Cquat and –CH2 = 10, signal of -CH and –CH3 = 7]. IR Spectra (KBr, 4000–400 cm–1): 3016 ѵ(= C-H)ar. Stretching, 1614 ѵ(C = C)ar. Stretching, 1462 ѵ(C = N)ar. Stretching, 1226 ѵ(C-N)ar. Stretching, 856 ѵ(C-Br)stretching, 786 ѵ(= C-H)bending, 671 ѵ(C-H)bending.
2.3.6 1-(4-bromophenyl)-5-(5-bromothiophen-2-yl)-3-(4-(methylthio)phenyl)-4,5-dihydro- 1H-pyrazole (L6)
This ligand (L6) was prepared through the addition of α,β-unsaturated enone (3f) (1.5 mmol) and 4-OCH3 phenyl hydrazine (1.5 mmol), after 5–6 h reflux; Color: yellowish crystalline solid; Empirical formula: C20H16Br2N2S2 Yield: 80.79% Melting point: 246–250°C Molecular weight: 508.29 gm/mol calc. (%):C, 47.26; H, 3.17; N, 5.55; S, 12.61 Found. (%): C, 47.18; H, 3.23; N, 5.37;S, 12.55 m/z(%):507 (100) [M]+, 509 [M + 2]+; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.640 (2H, d, J = 8.4 Hz, H3’’’,5’’’), 7.328 (2H, dd, J1 = 2.0 Hz, J2 = 6.8 Hz, H2’’,6’’), 7.251 (1H, d, J = 8.0 Hz, H3), 7.036 (2H, dd, J1 = 2.0 Hz, J2 = 6.8 Hz, H3’’,5’’), 6.899 (2H, d, J = 3.6 Hz, H2’’’,6’’’), 6.781 (1H, d, J = 3.6 Hz, H4), 5.470 (1H, dd, J1 = 5.2 Hz, J2 = 8.8 Hz, H3’), 3.799 (1H, dd, J1 = 12.0 Hz, J2 = 16.8 Hz, H4’a), 3.268 (1H, dd, J1 = 6.8 Hz, J2 = 17.2 Hz, H4’b), 2.537 (3H, S, -SCH3) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 151.85 (C5’, -Cquat), 145.58 (C1’’’, -Cquat), 144.15 (C1’’, -Cquat), 138.88 (C4’’, -Cquat), 124.70 (C2, -Cquat), 117.38 (C5, -Cquat), 113.12 (C4’’’, -Cquat), 112.94 (C3’, -Cquat), 43.68 (C4’, -CH2) 151.30 (C3, -CH), 142.31 (C4, -CH), 131.77 (C3’’’,5’’’, -CH), 129.77 (C2’’,6’’, -CH), 126.59 (C3’’,5’’, -CH), 126.26 (C2’’’,6’’’, -CH), 15.46 (SCH3, -CH3) [Total signal observed = 16: signal of Cquat and –CH2 = 9, signal of -CH and –CH3 = 7]. IR Spectra (KBr, 4000–400 cm–1): 3096 ѵ(= C-H)ar. Stretching, 1650 ѵ(C = C)ar. Stretching, 1566 ѵ(C = N)ar. Stretching, 1319 ѵ(C-N)ar. Stretching, 910 ѵ(C-Br)stretching, 794 ѵ(= C-H)bending, 678 ѵ(C-H)bending.
2.4 General method for synthesis of Palladium(II) complexes (I-VI)
The thiophene-pyrazole-based ligands(1.0 mmol) (L1 – L6) dissolved in a small amount of toluene. Ligands solution was added dropwise in 1.0 mmol sodium tetrachloropalladate(II) solution and refluxed in the presence of toluene for 12 h at 150 ⁰C. After 12 h, a brownish colour product was obtained. Synthesized compounds washed with methanol. The reaction scheme for the preparation of organometallic compounds (I - VI) is depicted in scheme 1.
2.4.1 Characterization of heteroleptic palladium(II) complex Na[Pd(L1)Cl2] (I)
It was synthesized using ligand (L1) (1.0 mmol). Color: brown crystalline solid; Empirical formula: C18H12BrClN3NaPdS Yield: 59.78% Melting point: > 300°C Molecular weight: 618.04 gm/mol Calc. (%):C, 34.98; H, 1.96; N, 3.72; Pd, 17.22; S, 5.19 Found. (%): C, 35.03; H, 1.53; N, 3.79;Pd, 17.33; S, 5.24 m/z(%):350.4 (100) [M+], 352.4 [M + 2] Conductance: 14.72 ohm-1cm2mol-1; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.907 (2H, d, J = 4.0 Hz, H3,4), 7.626 (1H, d, J = 7.2 Hz, H4’’), 7.534 (2H, dd, J1 = 8.4 Hz, J2 = 15.2 Hz, H3’’’,5’’’), 7.360 (1H, t, J = 8.8 Hz, H5’’), 7.055 (2H, dd, J1 = 6.8 Hz, J2 = 8.8 Hz, H2’’’,6’’’), 6.907 (1H, d, J = 3.6 Hz, H6’’), 5.511 (1H, dd, J1 = 6.4 Hz, J2 = 12.8 Hz, H3’), 3.847 (1H, dd, J1 = 12.0 Hz, J2 = 16.8 Hz, H4’a), 3.323 (1H, dd, J1 = 6.0 Hz, J2 = 16.8 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm:154.97 (C2’’, -Cquat), 147.08 (C1’’’, -Cquat), 143.28 (C5’, -Cquat), 132.22 (C5, -Cquat), 130.87(C4’’’, -Cquat), 126.43 (C1’’, -Cquat), 115.67 (C2, -Cquat), 110.99 (C3’, -Cquat), 43.05 (C4’, -CH2) 154.04 (C4’’, -CH), 149.80 (C6’’, -CH), 130.04 (C3’’’,5’’’, -CH), 128.73 (C3, -CH), 127.70 (C4, -CH), 125.40 (C5’’, -CH), 123.93 (C2’’’,6’’’, -CH) [Total signal observed = 16: signal of Cquat and –CH2 = 9, signal of -CH and –CH3 = 7]. IR Spectra (KBr, 4000–400 cm–1): 2977 ѵ(= C-H)ar. Stretching, 1596 ѵ(C = C)ar. Stretching, 1502 ѵ(C = N)ar. Stretching, 1211 ѵ(C-N)ar. Stretching, 965 ѵ(C-Br)stretching, 825 ѵ(C-CI)stretching, 748 ѵ(= C-H)bending, 694 ѵ(C-H)bending, 555 ѵ(Pd-N).
2.4.2 Characterization of heteroleptic palladium(II) complex Na[Pd(L2)Cl2] (II)
It was synthesized using ligand (L2) (1.0 mmol). Empirical formula: C20H12BrCl3F3N2NaPdS Yield: 57.24% Melting point: > 300°C Molecular weight: 685.05 gm/mol Calc. (%):C, 35.07; H, 1.77; N, 4.09; Pd, 15.53; S, 4.68 Found. (%):C, 35.19; H, 1.63; N, 4.14; Pd, 15.79; S, 4.75 Conductance: 16.57 ohm-1cm2mol-1 ; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 8.499 (2H, dt, H4’’,6’’), 7.379 (1H, t, H5’’), 7.087 (2H, d, J = 2.4 Hz, J = 7.2 Hz, H3’’’,5’’’), 6.902 (2H, d, J = 2.0 Hz, J = 6.0 Hz, H2’’’,6’’’), 6.778 (2H, d, J = 3.6 Hz, H3,4), 5.557 (1H, dd, J1 = 6.4 Hz, J2 = 12.0 Hz, H3’), 3.923 (1H, dd, J1 = 12.4 Hz, J2 = 18.0 Hz, H4’a), 3.458 (1H, dd, J1 = 6.4 Hz, J2 = 18.0 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm:159.14 (C1’’’, -Cquat), 158.54 (C5’, -Cquat), 154.46 (C1’’, -Cquat), 146.86 (C5, -Cquat), 129.82(C3’’, -Cquat), 124.94 (C4’’’, -Cquat), 115.75 (-CF3, -Cquat), 114.54 (C2’’, -Cquat), 113.23 (C3’, -Cquat), 42.86 (C4’, -CH2) 153.64 (C6’’, -CH), 143.64 (C4’’, -CH), 143.11 (C3, -CH), 142.97 (C4, -CH), 132.32 (C3’’’,5’’’, -CH), 132.09 (C5’’, -CH), 131.98 (C2’’’,6’’’, -CH), 114.82 (C2, -CH) [Total signal observed = 18: signal of Cquat and –CH2 = 10, signal of -CH and –CH3 = 8]. IR Spectra (KBr, 4000–400 cm–1): 2923 ѵ(= C-H)ar. Stretching, 1627 ѵ(C = C)ar. Stretching, 1496 ѵ(C = N)ar. Stretching, 1257 ѵ(C-N)ar. Stretching, 864 ѵ(C-Br)stretching, 756 ѵ(= C-H)bending, 632 ѵ(C-H)bending, 524 ѵ(Pd-N).
4.4.3 Characterization of heteroleptic palladium(II) complex Na[Pd(L2)Cl2] (III)
It was synthesized using ligand (L3) (1.0 mmol). Color: brown crystalline solid; Empirical formula: C20H15BrCl3N2NaPdS2 Yield: 53.74% Melting point: > 300°C Molecular weight: 663.14 gm/mol Calc. (%): C, 36.22; H, 2.28; N, 4.22; Pd, 16.05; S, 9.67 Found. (%): C, 36.16; H, 2.20; N, 4.15; Pd, 15.88; S, 9.77 Conductance: 15.96 ohm-1cm2mol-1 ; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.948 (1H, S, H3’’), 7.906 (1H, d, J = 7.2 Hz, H5’’), 7.624 (1H, d, J = 7.6 Hz, H6’’), 7.554 (1H, d, J = 8.4 Hz, H3), 7.361 (2H, d, J = 2.0 Hz, H3’’’,5’’’), 7.062 (2H, d, J = 9.2 Hz, H2’’’,6’’’), 6.907 (1H, d, J1 = 4.0 Hz, H4), 5.510 (1H, dd, J1 = 6.4 Hz, J2 = 12.0 Hz, H3’), 3.847 (1H, dd, J1 = 12.4 Hz, J2 = 17.2 Hz, H4’a), 3.322 (1H, dd, J1 = 6.4 Hz, J2 = 17.2 Hz, H4’b), 2.281 (3H, S, -SCH3) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 154.62 (C1’’’, -Cquat), 147.74 (C5’, -Cquat), 144.49 (C4’’, -Cquat), 140.26 (C5, -Cquat), 126.26(C2’’, -Cquat), 126.16 (C4’’’, -Cquat), 124.70 (C1’’, -Cquat), 112.08 (C3’, -Cquat), 111.93 (C2, -Cquat), 43.68 (C4’, -CH2) 153.13 (C3’’’,5’’’, -CH), 143.35 (C6’’, -CH), 131.77 (C3, -CH), 129.77 (C4, -CH), 115.45 (C3’’, -CH), 108.10 (C5’’, -CH), 107.04 (C2’’’,6’’’, -CH), 15.47 (-SCH3, -CH3) [Total signal observed = 18: signal of Cquat and –CH2 = 10, signal of -CH and –CH3 = 8]. IR Spectra (KBr, 4000–400 cm–1): 3047 ѵ(= C-H)ar. Stretching, 1589 ѵ(C = C)ar. Stretching, 1488 ѵ(C = N)ar. Stretching, 1380 ѵ(C-N)ar. Stretching, 817 ѵ(C-Br)stretching, 748 ѵ(= C-H)bending, 667 ѵ(C-H)bending, 570 ѵ(Pd-N).
2.4.4 Characterization of heteroleptic palladium(II) complex Na[Pd(L4)Cl2] (IV)
It was synthesized using ligand (L4) (1.0 mmol). Color: brown crystalline solid; Empirical formula: C18H12Br2Cl2N3NaPdS Yield: 57.48% Melting point: > 300°C Molecular weight: 662.49 gm/mol Calc. (%): C, 32.63; H, 1.83; N, 6.34; Pd, 16.06; S, 4.84 Found. (%):C, 32.14; H, 1.82; N, 6.54; Pd, 16.22; S, 4.71; Conductance: 18.04 ohm-1cm2mol-1; 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.939 (1H, t, J = 8.8 Hz H5’’), 7.610 (1H, d, J = 6.8 Hz, H4’’), 7.556 (1H, d, J = 8.8 Hz, H6’’), 7.354 (2H, dd, J1 = 8.0 Hz, J2 = 14.0 Hz, H3’’’,5’’’), 7.043 (2H, dd, J1 = 11.2 Hz, J2 = 15.6 Hz H2’’’,6’’’), 6.902 (1H, d, J = 8.0 Hz, H4), 6.871 (1H, d, J = 8.0 Hz, H3), 5.511 (1H, dd, J1 = 6.4 Hz, J2 = 11.6 Hz, H3’), 3.857 (1H, dd, J1 = 6.8 Hz, J2 = 16.0 Hz, H4’a), 3.325 (1H, dd, J1 = 10.8 Hz, J2 = 17.6 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 158.41 (C1’’’, -Cquat), 156.46 (C2’’, -Cquat), 149.78 (C5, -Cquat), 138.86 (C5’, -Cquat), 132.71 (C1’’, -Cquat), 128.04 (C4’’’, -Cquat), 122.58 (C2, -Cquat), 114.49 (C3’, -Cquat), 33.12 (C4’, -CH2) 150.73 (C4’’, -CH), 146.46 (C6’’, -CH), 141.66 (C3’’’,5’’’, -CH), 133.94 (C3, -CH), 124.77 (C4, -CH), 117.04 (C5’’, -CH), 108.93 (C2’’’,6’’’, -CH) [Total signal observed = 16: signal of Cquat and –CH2 = 9, signal of -CH and –CH3 = 7]. IR Spectra (KBr, 4000–400 cm–1): 3047 ѵ(= C-H)ar. Stretching, 1596 ѵ(C = C)ar. Stretching, 1488 ѵ(C = N)ar. Stretching, 1380 ѵ(C-N)ar. Stretching, 887 ѵ(C-Br)stretching, 745 ѵ(= C-H)bending, 613 ѵ(C-H)bending, 547 ѵ(Pd-N).
2.4.5 Characterization of heteroleptic palladium(II) complex Na[Pd(L5)Cl2] (V)
It was synthesized using ligand (L5) (1.0 mmol).Color: brown crystalline solid; Empirical formula: C20H12Br2Cl2F3N2NaPdS Yield: 60.14% Melting point: > 300°C Molecular weight: 729.50 gm/mol Calc. (%):Pd, 14.59; Found. (%):Pd, 14.35; Conductance: 20.18 ohm-1cm2mol- 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.793 (1H, t, J = 12.8 Hz, H5’’), 7.640 (1H, d, J = 8.4 Hz, H4’’), 7.441 (1H, d, J = 2.4 Hz, H6’’), 7.326 (1H, d, J = 8.4 Hz, H4), 7.192 (2H, d, J = 8.8 Hz, H3’’’,5’’’), 6.901 (2H, d, J = 4.0 Hz, H2’’’,6’’’), 6.784 (1H, d, J = 4.0 Hz, H3), 5.422 (1H, dd, J1 = 6.8 Hz, J2 = 11.6 Hz, H3’), 3.799 (1H, dd, J1 = 11.6 Hz, J2 = 16.8 Hz, H4’a), 3.269 (1H, dd, J1 = 6.4 Hz, J2 = 16.8 Hz, H4’b) 13C NMR (100 MHz, DMSO‐d6) δ/ppm: 155.45 (C1’’’, -Cquat), 150.73 (C5’, -Cquat), 144.82 (C3’’, -Cquat), 133.51 (C5, -Cquat), 129.91 (C1’’, -Cquat), 127.56 (C2’’, -Cquat), 119.49 (C4’’’, -Cquat), 115.30 (C2, -Cquat), 112.95 (C3’, -Cquat), 104.20 (-CF3, -Cquat), 31.13 (C4’, -CH2) 136.63 (C6’’, -CH), 130.69 (C3’’’,5’’’, -CH), 130.60 (C5’’, -CH), 126.51 (C3, -CH), 121.80 (C4, -CH), 116.62 (C4’’, -CH), 116.41 (C2’’’,6’’’, -CH) [Total signal observed = 18: signal of Cquat and CH2 = 11, signal of -CH and –CH3 = 7]. IR Spectra (KBr, 4000–400 cm–1): 3109 ѵ(= C-H)ar. Stretching, 1609 ѵ(C = C)ar. Stretching, 1535 ѵ(C = N)ar. Stretching, 1257 ѵ(C-N)ar. Stretching, 906 ѵ(C-Br)stretching, 810 ѵ(= C-H)bending, 624 ѵ(C-H)bending, 563 ѵ(Pd-N) .
2.4.6 Characterization of heteroleptic palladium(II) complex Na[Pd(L6)Cl2] (VI)
It was synthesized using ligand (L6) (1.0 mmol). Color: brown crystalline solid; Empirical formula: C20H15Br2Cl2N2NaPdS2 Yield: 51.49% Melting point: > 300°C Molecular weight: 707.59 gm/mol Calc. (%):C, 33.95; H, 2.14; N, 3.96; Pd, 15.04; S, 9.06; Found. (%):C, 33.82; H, 2.03; N, 4.05; Pd, 15.21; S, 9.16; Conductance: 18.76 ohm-1cm2mol-1. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.640 (2H, dd, J1 = 2.0 Hz, J2 = 6.8 Hz, H3’’’,5’’’), 7.328 (2H, d, J = 9.2 Hz, H3’’,4’’), 7.265 (1H, S, H6’’), 7.037 (2H, dd, J1 = 2.0 Hz, J2 = 6.8 Hz, H2’’’,6’’’), 6.898 (1H, d, J = 3.6 Hz, H4), 6.778 (1H, d, J = 3.6 Hz, H3), 5.421 (1H, dd, J1 = 6.4 Hz, J2 = 11.6 Hz, H3’), 3.795 (1H, dd, J1 = 11.6 Hz, J2 = 16.8 Hz, H4’a), 3.268 (1H, dd, J1 = 6.4 Hz, J2 = 16.8 Hz, H4’b), 2.536 (3H, S, -SCH3) 13C NMR (100 MHz, DMSO‐d6) δ/ppm:153.21 (C1’’’, -Cquat), 149.22 (C5’, -Cquat), 146.35 (C4’’, -Cquat), 132.62 (C5, -Cquat), 129.59 (C2’’, -Cquat), 127.69 (C1’’, -Cquat), 123.20 (C4’’’, -Cquat), 123.12 (C2, -Cquat), 111.10 (C3’, -Cquat), 39.34 (C4’, -CH2) 149.09 (C3’’’,5’’’, -CH), 134.98 (C3’’,5’’, -CH), 129.00 (C6’’, -CH), 126.26 (C3, -CH), 115.17 (C4, -CH), 109.34 (C2’’’,6’’’, -CH), 17.24 (-SCH3, -CH3) [Total signal observed = 17: signal of Cquat and –CH2 = 10, signal of -CH and –CH3 = 7]. IR Spectra (KBr, 4000–400 cm–1): 3039 ѵ(= C-H)ar. Stretching, 1674 ѵ(C = C)ar. Stretching, 1596 ѵ(C = N)ar. Stretching, 1404 ѵ(C-N)ar. Stretching, 918 ѵ(C-Br)stretching, 825 ѵ(= C-H)bending, 686 ѵ(C-H)bending, 547 ѵ(Pd-N).