1. Nummenmaa, L. et al. Emotions promote social interaction by synchronizing brain activity across individuals. Proc. Natl. Acad. Sci. 109, 9599–9604 (2012).
2. Jääskeläinen, I. P. et al. Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor. Sci. Rep. 6, 27741 (2016).
3. Nguyen, M., Vanderwal, T. & Hasson, U. Shared understanding of narratives is correlated with shared neural responses. Neuroimage 184, 161–170 (2019).
4. Saalasti, S. et al. Inferior parietal lobule and early visual areas support elicitation of individualized meanings during narrative listening. Brain Behav. 9, e01288 (2019).
5. Charest, I., Kievit, R. A., Schmitz, T. W., Deca, D. & Kriegeskorte, N. Unique semantic space in the brain of each beholder predicts perceived similarity. Proc. Natl. Acad. Sci. U. S. A. 111, 14545–14570 (2014).
6. Polk, T. A., Park, J., Smith, M. R. & Park, D. C. Nature versus nurture in ventral visual cortex: A functional magnetic resonance imaging study of twins. J. Neurosci. 27, 13921–13925 (2007).
7. Pinel, P. et al. Genetic and environmental influences on the visual word form and fusiform face areas. Cereb. Cortex 25, 2478–2493 (2015).
8. Matthews, S. C. et al. Heritability of anterior cingulate response to conflict: An fMRI study in female twins. Neuroimage 38, 223–227 (2007).
9. Blokland, G. A. M. et al. Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biol. Psychol. 79, 70–79 (2008).
10. Koten, J. W. et al. Genetic contribution to variation in cognitive function: an fMRI study in twins. Science 323, 1737–1740 (2009).
11. Pinel, P. & Dehaene, S. Genetic and environmental contributions to brain activation during calculation. Neuroimage 81, 306–316 (2013).
12. Sommer, I. E. C., Ramsey, N. F., Mandl, R. C. W. & Kahn, R. S. Language lateralization in monozygotic twin pairs concordant and discordant for handedness. Brain 125, 2710–2718 (2002).
13. Sakai, K. L., Miura, K., Narafu, N. & Muraishi, Y. Correlated functional changes of the prefrontal cortex in twins induced by classroom education of second language. Cereb. Cortex 14, 1233–1239 (2004).
14. Sonkusare, S., Breakspear, M. & Guo, C. Naturalistic stimuli in neuroscience: Critically acclaimed. Trends Cogn. Sci. 23, 699–714 (2019).
15. Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).
16. Brewer, A. A. & Barton, B. Maps of the auditory cortex. Annu. Rev. Neurosci. 39, 385–407 (2016).
17. Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2007).
18. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).
19. Paxinos, G. & Huang, X.-F. Atlas of the human brainstem. (Elsevier, 2013).
20. Jones, E. G. The thalamus. (Springer Science & Business Media, 2012).
21. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 1802.03426 (2018).
22. Fuster, J. The prefrontal cortex. (Academic Press, 2015).
23. Olson, I. R., Plotzker, A. & Ezzyat, Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130, 1718–1731 (2007).
24. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).
25. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004).
26. Hasson, U., Furman, O., Clark, D., Dudai, Y. & Davachi, L. Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding. Neuron 57, 452–462 (2008).
27. Naci, L., Cusack, R., Anello, M. & Owen, A. M. A common neural code for similar conscious experiences in different individuals. Proc. Natl. Acad. Sci. U. S. A. 111, 14277–14282 (2014).
28. Falconer, D. S. Introduction to quantitative genetics. (Oliver and Boyd, 1960).
29. Holzinger, K. J. The relative effect of nature and nurture influences on twin differences. J. Educ. Psychol. 20, 241–248 (1929).
30. Furr, R. M. The double-entry intraclass correlation as an index of profile similarity: meaning, limitations, and alternatives. J. Pers. Assess. 92, 1–15 (2010).
31. Ojemann, J. G. et al. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6, 156–167 (1997).
32. van Pelt, S., Boomsma, D. I. & Fries, P. Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced gamma-band synchronization. J. Neurosci. 32, 3388–3392 (2012).
33. Bilalić, M., Grottenthaler, T., Nägele, T. & Lindig, T. The faces in radiological images: Fusiform face area supports radiological expertise. Cereb. Cortex 26, 1004–1014 (2016).
34. Martens, F., Bulthé, J., van Vliet, C. & Op de Beeck, H. Domain-general and domain-specific neural changes underlying visual expertise. Neuroimage 169, 80–93 (2018).
35. Blomert, L. The neural signature of orthographic-phonological binding in successful and failing reading development. Neuroimage 57, 695–703 (2011).
36. Babajani-Feremi, A. Neural mechanism underling comprehension of narrative speech and its heritability: Study in a large population. Brain Topogr. 30, 592–609 (2017).
37. Morell, R. J. et al. A twin study of auditory processing indicates that dichotic listening ability is a strongly heritable trait. Hum. Genet. 122, 103–111 (2007).
38. Brewer, C. C. et al. Heritability of non-speech auditory processing skills. Eur. J. Hum. Genet. 24, 1137–1144 (2016).
39. Araki, T. et al. Language-related cerebral oscillatory changes are influenced equally by genetic and environmental factors. Neuroimage 142, 241–247 (2016).
40. Côté, C. et al. Individual variation in neural correlates of sadness in children: A twin fMRI study. Hum. Brain Mapp. 28, 482–487 (2007).
41. Mesulam, M. M. Paralimbic (mesocortical) areas. in Principles of behavioral and cognitive neurology 49–54 (Oxford University Press New York, 2000).
42. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 465, 499–523 (2003).
43. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 493, 479–509 (2005).
44. Correia, J. et al. Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe. J. Neurosci. 34, 332–338 (2014).
45. Malone, P. S., Glezer, L. S., Kim, J., Jiang, X. & Riesenhuber, M. Multivariate pattern analysis reveals category-related organization of semantic representations in anterior temporal cortex. J. Neurosci. 36, 10089–10096 (2016).
46. Reniers, R. L. E. P., Völlm, B. A., Elliott, R. & Corcoran, R. Empathy, ToM, and self–other differentiation: An fMRI study of internal states. Soc. Neurosci. 9, 50–62 (2014).
47. Dolan, R. ., Lane, R., Chua, P. & Fletcher, P. Dissociable temporal lobe activations during emotional episodic memory retrieval. Neuroimage 11, 203–209 (2000).
48. Hsieh, S., Hornberger, M., Piguet, O. & Hodges, J. R. Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia 50, 1814–1822 (2012).
49. Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9, 148–58 (2008).
50. Floresco, S. B. The nucleus accumbens: an interface between cognition, emotion, and action. Annu. Rev. Psychol. 66, 25–52 (2015).
51. Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).
52. Patel, S. R. et al. Single-neuron responses in the human nucleus accumbens during a financial decision-making task. J. Neurosci. 32, 7311–7315 (2012).
53. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D. & Loewenstein, G. Neural predictors of purchases. Neuron 53, 147–156 (2007).
54. Hasson, U., Malach, R. & Heeger, D. J. Reliability of cortical activity during natural stimulation. Trends Cogn. Sci. 14, 40–48 (2010).
55. Finn, E. S. et al. Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. Neuroimage 215, 116828 (2020).
56. Eickhoff, S. B., Milham, M. & Vanderwal, T. Towards clinical applications of movie fMRI. Neuroimage 217, 116860 (2020).
57. Nishida, S. et al. Reduced intra- and inter-individual diversity of semantic representations in the brains of schizophrenia patients. bioRxiv 2020.06.03.132928 (2020) doi:10.1101/2020.06.03.132928.
58. Hayakawa, K. & Iwatani, Y. An overview of multidisciplinary research resources at the Osaka University Center for Twin Research. Twin Res. Hum. Genet. 16, 217–220 (2013).
59. Honda, C., Watanabe, M., Tomizawa, R. & Sakai, N. Update on Osaka University Twin Registry: An Overview of Multidisciplinary Research Resources and Biobank at Osaka University Center for Twin Research. Twin Res. Hum. Genet. 22, 597–601 (2019).
60. Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).
61. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).
62. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).
63. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010).
64. Fischl, B. et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
65. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis - connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).
66. Kriegeskorte, N. & Kievit, R. A. Representational geometry: Integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412 (2013).
67. Tenenbaum, J. B., de Silva, V. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).
68. Bartley, A. J., Jones, D. W. & Weinberger, D. R. Genetic variability of human brain size and cortical gyral patterns. Brain 120, 257–269 (1997).
69. Yang, Y. et al. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: Characterization of functional contrast and susceptibility artifacts. Magn. Reson. Med. 48, 278–289 (2002).
70. Boomsma, D., Busjahn, A. & Peltonen, L. Classical twin studies and beyond. Nat. Rev. Genet. 3, 872–882 (2002).
71. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).