Barlow, M. and Drew, G. 2020. Slow infrastructures in times of crisis: unworking speed and convenience. Postcolonial Studies, 24, 1-22. doi: https://doi.org/10.1080/13688790.2020.1804105.
Barocas, S. and Nissenbaum, H. 2014. Big data’s end run around anonymity and consent. In Privacy, big data, and the public good: Frameworks for engagement, ed. Lane, J. Stodden, V. Bender, S. and Nissenbaun, H. 44-75. Cambridge: Cambridge University Press.
Bates, J. 2012. This is what modern deregulation looks like”: co-optation and contestation in the shaping of the UK’s Open Government Data Initiative. The Journal of Community Informatics, 8(2), 1-20.
Bello, J. P. Mydlarz, C. and Salamon, J. 2018. Sound analysis in smart cities. In Computational Analysis of Sound Scenes and Events, ed. Virtanen, T. and Plumbley, M. D. 373-397. New York: Springer.
Benjamin, R. 2019. Race after technology: Abolitionist tools for the new jim code. Polity Press.
Biscani, F. and Izzo, D. 2020. A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338, doi: https://doi.org/10.21105/joss.02338
Bradley, A., Office for National Statistics 2014. 2011 Census: Workplace Population Analysis. Accessed July 23, 2021. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/workplacepopulationanalysis/2014-05-23
Brannon, M. M. 2017. Datafied and Divided: Techno–Dimensions of Inequality in American Cities. City and community. 16(1), 20-24. doi: https://doi.org/10.1111/cico.12220.
Cao, R. Li, B. Wang, Z. Peng, Z. R. Tao, S. and Lou, S. 2020. Using a distributed air sensor network to investigate the spatiotemporal patterns of PM2. 5 concentrations. Environmental Pollution, 264, 114549. doi: https://doi.org/10.1016/j.envpol.2020.114549.
Carr, E. Murray, E. T. Zaninotto, P. Cadar, D. Head, J. Stansfeld, S. and Stafford, M. 2018. The association between informal caregiving and exit from employment among older workers: prospective findings from the UK Household Longitudinal Study. The Journals of Gerontology: Series B, 73(7), 1253-1262. doi: https://doi.org/10.1093/geronb/gbw156.
Corburn, J 2005. Street Science: Community Knowledge and Environmental Health Justice, Cambridge, MA: MIT Press.
Crawford, K. and Schultz, J. 2014. Big data and due process: Toward a framework to redress predictive privacy harms. Boston College Law Review., 55, 93-129.
D'Ignazio, C. and Klein, L. F. 2020. Data feminism. Mit Press.
Deb, K., Pratap A., Agarwal, S. and Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-19. doi: https://doi.org/10.1109/4235.996017.
Delmelle, E. (2010). Spatial optimisation methods. In Encyclopaedia of Human Geography, ed. Wharf, B. 2657-2659. SAGE.
Dencik, L. Hintz, A. and Cable, J. 2016. Towards data justice? The ambiguity of anti-surveillance resistance in political activism. Big Data and Society, 3(2), 1-12. doi: https://doi.org/10.1177/2053951716679678.
Department for Environment, Food and Rural Affairs (Defra) 2021. 'Low-cost' pollution sensors: Understanding uncertainties. Accessed June 24, 2021. https://uk-air.defra.gov.uk/research/aqeg/pollution-sensors/understanding-uncertainties.php.
Dodge, M. and Kitchin, R. 2005. Code and the transduction of space. Annals of the Association of American geographers, 95(1), 162-180. doi: https://doi.org/10.1111/j.1467-8306.2005.00454.x.
Eckersley, P. and Tobin, P. 2019. The impact of austerity on policy capacity in local government. Policy and Politics, 47(3), 455-472. doi: https://doi.org/10.1332/030557319X15613701303511.
Feinberg, S. N. Williams, R. Hagler, G. Low, J. Smith, L. Brown, R. Garver, D. Davis, M. Morton, M et al. 2019. Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors. Atmospheric environment, 213, 579-584. doi: https://doi.org/10.1016/j.atmosenv.2019.06.026.
Ferguson, A. G. 2019. The rise of big data policing: Surveillance, race, and the future of law enforcement. NYU Press.
Gabrys, J. 2017. Citizen sensing, air pollution and fracking: From ‘caring about your air’to speculative practices of evidencing harm. The Sociological Review, 65(2), 172-192. doi: https://doi.org/10.1177/0081176917710421
Gabrys, J. Pritchard, H. and Barratt, B. 2016. Just good enough data: Figuring data citizenships through air pollution sensing and data stories. Big Data and Society, 3(2), 2053951716679677. doi: https://doi.org/10.1177/2053951716679677.
Garai, Gautam and B. B. Chaudhuri. 2007. A distributed hierarchical genetic algorithm for efficient optimization and pattern matching. Pattern recognition 40(1), 212-228. doi: https://doi.org/10.1016/j.patcog.2006.04.023.
Graham, S. and Marvin, S. 2001. Splintering urbanism: networked infrastructures, technological mobilities and the urban condition. Psychology Press.
Gray, J. Lammerhirt, D. and Bounegru, L. 2016. Changing what counts. How can citizen-generated and cvil society data be used as an advocacy tool to change official data collection? Civicus. SSRN 2742871.
Grineski, S. E. and Collins, T. W. 2018. Geographic and social disparities in exposure to air neurotoxicants at US public schools. Environmental research, 161, 580-587. doi: https://doi.org/10.1016/j.envres.2017.11.047.
Hansson, S. O. and Hirsch Hadorn, G. 2018. Argument-based decision support for risk analysis. Journal of risk research, 21(12), 1449-1464. doi: https://doi.org/10.1080/13669877.2017.1313767.
Hebson, G. and Rubery, J. 2018. Employment relations and gender equality. In The Routledge companion to employment relations, eds. Wilkinson, A. Dundon, T. Donaghey. A.C. 107-121. New York: Routledge.
Heeks, R. and Shekhar, S. 2019. Datafication, development and marginalised urban communities: An applied data justice framework. Information, Communication and Society, 22(7), 992-1011. doi: https://doi.org/10.1080/1369118X.2019.1599039.
Holland, J. H. 1992. Genetic algorithms. Scientific American, 267(1), 66-73.
Hong, A. Kim, B. and Widener, M. 2020. Noise and the city: Leveraging crowdsourced big data to examine the spatio-temporal relationship between urban development and noise annoyance. Environment and Planning B: Urban Analytics and City Science, 47(7), 1201-1218. doi: https://doi.org/10.1177/2399808318821112.
Irwin, A 1995. Citizen Science: A Study of People, Expertise and Sustainable Development. London: Routledge.
Jameson, S. Richter, C. and Taylor, L. 2019. People’s strategies for perceived surveillance in Amsterdam Smart City. Urban Geography, 40(10), 1467-1484. doi: https://doi.org/10.1080/02723638.2019.1614369.
Kempin Reuter, T. 2019. Human rights and the city: Including marginalized communities in urban development and smart cities. Journal of Human Rights, 18(4), 382-402. doi: https://doi.org/10.1080/14754835.2019.1629887.
Kitchin, R. 2016. The ethics of smart cities and urban science. Philosophical transactions of the royal society A: Mathematical, physical and engineering sciences, 374(2083), 20160115. doi: https://doi.org/10.1098/rsta.2016.0115.
Kitchin, R. 2018. Reframing, reimagining and remaking smart cities. In Creating smart cities, ed. Coletta, C. Evans, L. Heaphy, L. Kitchin, R. 219-230. London: Routledge.
Kitchin, R. Cardullo, P. and Di Feliciantonio, C. 2019. Citizenship, justice, and the right to the smart city. In The right to the smart city, ed. Cardullo, P. Di Feliciantonio, C. and Kitchin, R. 1-24. Bingley: Emerald Publishing Limited.
Kitchin, R. Lauriault T. P., and McArdle, G. 2015. Smart cities and the politics of urban data. In Smart urbanism: Utopian vision or false dawn, ed. Marvin, S., Luque-Ayala, L., and McFarlane, C.16-33. London: Routledge.
Lagoze, C. 2014. Big Data, data integrity, and the fracturing of the control zone. Big Data and Society, 1(2), 1-11. doi: https://doi.org/10.1177/2053951714558281.
Lewis, A. and Edwards, P. 2016. Validate personal air-pollution sensors. Nature News, 535(7610), 29.
Longhi, S. 2020. A longitudinal analysis of ethnic unemployment differentials in the UK. Journal of Ethnic and Migration Studies, 46(5), 879-892. doi: https://doi.org/10.1080/1369183X.2018.1539254.
Mah, A. 2017. Environmental justice in the age of big data: Challenging toxic blind spots of voice, speed, and expertise. Environmental Sociology, 3(2), 122-133. doi: https://doi.org/10.1080/23251042.2016.1220849.
Maroto, M. and Pettinicchio, D. 2014. Disability, structural inequality, and work: The influence of occupational segregation on earnings for people with different disabilities. Research in Social Stratification and Mobility, 38, 76-92. doi: https://doi.org/10.1016/j.rssm.2014.08.002.
Michael, M. and Lupton, D. 2016. Toward a manifesto for the ‘public understanding of big data’. Public Understanding of Science, 25(1), 104-116. doi: https://doi.org/10.1177/0963662515609005.
Mitchell, G. and Dorling, D. 2003. An environmental justice analysis of British air quality. Environment and planning A, 35(5), 909-929. doi: https://doi.org/10.1068/a35240.
Nadybal, S. M. Collins, T. W. and Grineski, S. E. 2020. Light pollution inequities in the continental United States: A distributive environmental justice analysis. Environmental research, 189, 109959. doi: https://doi.org/10.1016/j.envres.2020.109959.
Newcastle City Council 2021. Equality and Diversity. Accessed June 24, 2021. https://www.newcastle.gov.uk/local-government/equality-and-diversity.
Office for National Statistics 2011. Population Weighted Centroids Guidance. Accessed July 22, 2021. https://geoportal.statistics.gov.uk/documents/ons::population-weighted-centroids-guidance/
O'Neil, C. 2016. Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.
Pritchard, H. and Gabrys, J. 2016. From citizen sensing to collective monitoring: Working through the perceptive and affective problematics of environmental pollution. GeoHumanities, 2(2), 354-371. doi: https://doi.org/10.1080/2373566X.2016.1234355.
Robinson, C. and Franklin, R. S. 2020. The sensor desert quandary: What does it mean (not) to count in the smart city?. Transactions of the Institute of British Geographers. 46(2), 238-254. doi: https://doi.org/10.1111/tran.12415.
Sadowski, J. and Pasquale, F. A. 2015. The spectrum of control: A social theory of the smart city. First Monday, 20(7).
Sanchez, L. and Reames, T. G. 2019. Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban Forestry and Urban Greening, 44, 126331. doi: https://doi.org/10.1016/j.ufug.2019.04.014.
Shelton, T. Zook, M. and Wiig, A. 2015. The ‘actually existing smart city’. Cambridge journal of regions, economy and society, 8(1), 13-25. doi: https://doi.org/10.1093/cjres/rsu026.
Simon, H.A. 1955. A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1). doi: https://doi.org/10.2307/1884852.
Solove, D. J. 2013. Privacy self-management and the consent paradox. Harvard Law Review, 126(7), 1880-1903.
Strebel, I. 2011. The living building: Towards a geography of maintenance work. Social and Cultural Geography, 12(03), 243-262. doi: https://doi.org/10.1080/14649365.2011.564732.
Sun, C. Li, V. O. Lam, J. C. and Leslie, I. 2019. Optimal Citizen-Centric Sensor Placement for Air Quality Monitoring: A Case Study of City of Cambridge, the United Kingdom. IEEE Access, 7, 47390-47400. doi: 10.1109/ACCESS.2019.2909111.
Tong, D. and Murray, A. T. 2012. Spatial optimization in geography. Annals of the Association of American Geographers, 102(6), 1290-1309. doi: https://doi.org/10.1080/00045608.2012.685044.
Uprichard, E. 2019. Focus: Big data, little questions? Accessed June 24, 2021.https://discoversociety.org/2013/10/01/focus-big-data-little-questions/.
Walker, R. McKenzie, P. Liddell, C. and Morris, C. 2012. Area-based targeting of fuel poverty in Northern Ireland: An evidenced-based approach. Applied Geography, 34, 639-649. doi: https://doi.org/10.1016/j.apgeog.2012.04.002.
Whipp, A. Malleson, N. Ward, J. and Heppenstall, A. 2021. Estimates of the Ambient Population: Assessing the Utility of Conventional and Novel Data Sources. ISPRS International Journal of Geo-Information, 10(3), 131. doi: https://doi.org/10.3390/ijgi10030131
Yang, X. S. 2021. Nature-Inspired Optimisation Algorithms: Second Edition. Elsevier.
Zuboff, S. 2015. Big other: surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75-89. https://doi.org/10.1057/jit.2015.5