1. Singhal, T., Satyavathi, C.T., Kumar, A., Sankar, S.M., Singh, S. P., Bharadwaj, C., J. Aravind, J., Anuradha, N., Meena, M.C. & Singh, N. Genotype x environment interaction and genetic association of grain iron and zinc content with other agronomic traits in RIL population of pearl millet. Crop Pasture Sci. 69, 1092–1102 (2018).
2. Anuradha, N., Satyavathi, C.T., Meena, M.C., Sankar, S.M., Bharadwaj, C., Bhat, J., Singh, O., Singh, S.P. Evaluation of pearl millet [Pennisetum glaucum (L.) R. Br.] for grain iron and zinc content in different agro climatic zones of India. Indian J. Genet. Plant Breeding 77 (1), 65–73 (2017).
3. Saleh, A.S.M., Zhang, Q., Chen, J. & Shen, Q. Millet grains: nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12, 281–295 (2013). doi: 10.1111/1541-4337.12012.
4. Parthasarathy, R.P., Birthal, P.S., Reddy, B.V.S., Rai, K.N. & Ramesh, S. Diagnostics of sorghum and pearl millet grains-based nutrition in India. International Sorghum and Millets Newsletter 44, 93–96 (2006).
5. Krishnan, R., Meera, M.S. Pearl millet minerals: effect of processing on bioaccessibility. J. Food Sci. Technol. 55, 3362–3372 (2018). doi: 10.1007/s13197-018-3305-9.
6. Welch, R.M. & Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364 (2004). doi: 10.1093/jxb/erh064.
7. Bailey, R.L., West, K.P. Jr. & Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66, 22–33 (2015). doi: 10.1159/ 000371618.
8. Ezzati, M., Lopez, A.D., Rodgers, A., Vanderhoorn, S. & Murray, C.J.L. Selected major risk factors and global and regional burden of disease. Lancet 360, 1347–1360 (2002).
9. Kramer, C.V. & Allen, S. Malnutrition in developing countries. Paediatr. Child Health 25, 422–427 (2015).
10. 10.Gibson, R.S., Hess, S.Y., Hotz, C. & Brown, K. H. Indicators of zinc status at the population level: a review of the evidence. Br. J. Nutr. 99, S14-S23 (2008). doi. 10.1017/S0007114508006818V.
11. Chasapis, C.T., Loutsidou, A.C., Spiliopoulou, C.A. & Stefanidou, M.E. Zinc and human health: an update. Arch. Toxicol. 86, 521–553 (2012). doi: 10.1007/s00204-011-0775-1.
12. Howarth E Bouis, Christine Hotz, Bonnie McClafferty, J V Meenakshi, Wolfgang H Pfeiffer. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32, S31-S40 (2011). doi: 10.1177/15648265110321S105.
13. Anuradha, N., Satyavathi, C.T., Bharadwaj, C., Sankar, M., Singh, S.P., Pathy, T.L. Pearl millet genetic variability for grain yield and micronutrients in the arid zone of India. J. Pharmaco. Phytochem. 7(1), 875–878 (2018).
14. Satyavathi, C.T., Sankar, M.S., Singh, S.P., Bhowmick, P., Bhat, J., Singh, O. & Anuradha, N. Stability analysis of Grain Iron and Zinc content in Pearl millet (Pennisetum glaucum (L.) R. Br.). Int. J. Tropical Agri. 33 (2), 1387–1394 (2015).
15. Kodkany, B.S., Bellad, R.M., Mahantshetti, N.S., Westcott, J.E., Krebs, N.F., Kemp J.F. & Hambidge, K.M. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 143, 1489–1493 (2013). doi.10.3945/jn.113.176677.
16. Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., Saito, K. Integration of Transcriptomics and Metabolomics for Understanding of Global Responses to Nutritional Stresses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 101,10205–10210 (2004) doi: 10.1073/pnas.0403218101.
17. Kulski, J.K. Next-Generation Sequencing -An Overview of the History, Tools, and “Omic” Applications (2016) 10.5772/61964.
18. Agarwal, P., Agarwal, P.K., Joshi, A.J., Sopory, S.K. & Reddy, M.K. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep. 37 (2), 1125–1135 (2010).
19. Verma, D., Singla-Pareek, S.L., Rajagopal, D., Reddy, M.K. & Sopory, S.K., Functional validation of a novel isoform of Na+/H + antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 32 (3), 621–628 (2007). https://doi.org/10. 1007/s12038-007-0061-9.
20. Reddy, P.S., Reddy, G.M., Pandey, P., Chandrasekhar, K. & Reddy, M.K. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol. Biol. Rep. 39 (6), 7163–7174 (2012). https://doi.org/10.1007/s11033-012-1548-5.
21. Desai, M.K., Mishra, R.N., Verma, D., Nair, S., Sopory, S.K. & Reddy, M.K. Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol. Biochem. 44 (7–9), 483–493 (2006).
22. Singh, J., Reddy, P.S., Reddy, C.S. & Reddy, M.K. Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene 4 55–63, (2015) https://doi.org/10.1016/j.plgene.
23. Sankar, S.M., Satyavathi, C.T., Barthakur, S., Singh, S.P., Bharadwaj, C. & Soumya, S.L.. Differential modulation of heat inducible genes across diverse genotypes and molecular cloning of a sHSP from Pearl millet [Pennisetum glaucum (L). R. Br]. Front. Plant Sci. (2021) doi:10.3389/fpls/2021.659893
24. Jaiswal, S., Antala ,T.J., Mandavia, M.K., Chopra, M., Jasrotia, R.S., Tomar, R.S., Kheni, J., Angadi, U.B., Iquebal, M.A., Golakia, B.A., Rai, A. & Kumar, D. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8(1), 3382 (2018).
25. Shinde, H. et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exp. Botany 155, 619–627 (2018).
26. Hamid, R., Marashi, H., Tomar, R.S., Shafaroudi, S.M., Sabara, P.H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.). PLoS One 14, (2019).
27. Strickler, S., Bombarely, A. & Mueller, L. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. American J. Botany 99, 257–266 (2012) 10.3732/ajb.1100292.
28. Varshney, R.K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P. et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotech. 35, 969–976 (2017).
29. Conesa, A.S., Gotz, J.M., Garcia-Gomez, J., Terol, M. & Talon, M.R. Blast 2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics 21 (18), 3674–3676 (2005).
30. Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie. Nat. Methods, 9, 357–359 (2012) https://doi.org/10.1038/nmeth.1923.
31. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatic 26 (1), 139–140 (2010).
32. Usadel, B., Obayashi, T., Mutwil, M., Giorgi, F.M., Bassel, G.W., Tanimoto M., Amanda et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009).
33. Hamid, R.,Tomar, R.S., Marashi, H., Shafaroudi, S.M., Golakiya, B.A.& Motahhareh Mohsenpour, M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 660, 80–91 (2018).
34. Tulsani, N.L., Hamid, R., Jacob, F., Umretiya, N.G., Nandha, A.K., Tomar, R.S. & Golakiya, B.A. Transcriptome landscaping for gene mining and SSR marker development in Coriander (Coriandrum sativum L.). Genomics 112(2), 1545–1553 (2020).
35. Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: a Report of the Panel on Micronutrients. Washington, DC: National Academy Press; 2001.
36. Lockyer, S., White, A. & Buttriss, J.L. Biofortified crops for tackling micronutrient deficiencies-what impact are these having in developing countries and could they be of relevance within Europe. Nutr. Bull. 43, 319–357 (2018).
37. Singhal T, Satyavathi CT, Singh SP, Kumar A, Sankar SM, Bharadwaj C, Mallick M, Bhat J, Anuradha N. Singh N Multi environment quantitative trait loci mapping for grain iron and zinc content using biparental recombinant inbred line population in pearl millet. Frontiers in Plant Science (2021) doi:10.3389/fpls/2021.659789
38. Singhal, T., Satyavathi, C.T., Singh, S.P., Sankar, S.M., Anuradha, N., Bharadwaj, C., Kumar, A., Mallick, M. & Singh, N. Identification of new stable and high iron rich fertility restorers in Pearl millet. Indian J. Genet. Plant Breed. 79(3), 552–562 (2019) doi: 10.31742/IJGPB.79.3.4
39. Satyavathi, C.T., Singh, S.P., Sankar, M.S., Prabhu, K.V. & Gupta, H.S. PPMI 904 (IC0617290; INGR16004), a Pearl Millet (Pennisetum glaucum L.) Germplasm with High Iron Content of 91 mg/kg High Zinc Content of 78 mg/kg. Indian J. Plant Genet. Resources 31 (1),105–106 (2018).
40. Anuradha, N, Satyavathi, C.T., Bharadwaj, C., Bhat, J. & Pathy, T.L. Correlation studies on quality and other economic traits in pearl millet. Int. J. Chem. Studies 6(5), 2041–2043 (2018).
41. Kumar, S., Hash, C.T., Nepolean,T., Mahendrakar, M.D., Satyavathi, C.T., Singh, G., et al. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes. 9 (248), (2018). doi:10.3390/genes9050248
42. Anuradha, N., Satyavathi, C.T., Bharadwaj, C., Sankar, S.M. & Pathy, T.L. Association of agronomic traits and micronutrients in pearl millet. Int. J. Chemical Studies 6(1), 181–184 (2018).
43. Anuradha, N., Satyavathi, C.T., Bharadwaj, C., Nepolean, T., Sankar, S.M., Singh, S.P., Meena, M.C., Singhal, T. & Srivastava, R.K. Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front. Plant Sci. 8, 412. (2017) doi: 10.3389/fpls.2017.00412.
44. Shanmugam, V.L. J.C. & Yeh, K.C. Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front. Plant Sci. 4, 281 (2013) doi: 10.3389/fpls.2013.00281
45. Rout, G.R. & Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 3, 1–24 (2015)
46. Kanehisa, M. and Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).
47. Kanehisa, M. KEGG bioinformatics resource for plant genomics and metabolomics. Methods Mol. Biol. 1374, 55–70 (2016).
48. Kanehisa, M., Sato, Y., and Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
49. Mishra,V.K., Gupta, S., Chand, R., Yadav, P.S., Singh, S.K. et al. Comparative transcriptomic profiling of High- and Low- grain Zinc and Iron containing Indian wheat genotypes. Curr. Plant Bio. 18, 100105 (2019).
50. Senthilvel, S., Jayashree, B., Mahalakshmi, V., Kumar P.S., Nakka, S., Nepolean, T & Hash, C.T. Development and mapping of Simple Sequence Repeat markers for pearl millet from data mining of Expressed Sequence Tags. BMC Plant Biol. 8, 119 (2008) https://doi.org/10.1186/1471-2229-8-119.
51. Ludwig, Y. & Slamet-Loedin, I.H. Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product. Front. Plant Sci. 10 (2019) 833. doi. 10.3389/fpls.2019.00833.
52. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005) https://doi.org/10.1038/nature 03959.
53. Jaiswal, S., Jadhav, P.V., Jasrotia, R.S. et al. Transcriptomic signature reveals mechanism of flower bud distortion in witches’-broom disease of soybean (Glycine max). BMC Plant Biol. 19, 26 (2019).
54. Vatanparast, M. et al. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus Leguminosae). Sci. Rep. 6, 290 (2016) https://doi.org/10.1038/srep29070.
55. Hrdlickova, R., Toloue, M. & Tian, B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 8 (1), e1364 (2017) https://doi.org/10.1002/wrna.
56. Jaiswal, S., Tomar, R.S., Vadukool, K., Chopra, U.M., Rathod, V.M., Parakhia, M.V., Iqbal, M.A., Rai, A. & Kumar, D. Transcriptome profiling of Indian sesame (Sissemum indicum L.) and discovery of genetic region markers. Bharatiya Krishi Anusandhan Patrika, 35 (3), 151–158 (2020).
57. Garg, R., Patel, R.K., Jhanwar, S, Priya, P., Bhattacharjee, A., Yadav, G., Bhatia, S. et al. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physio. 156 (4), 1661–1678 (2011) https://doi.org/10.1104/pp.111.178616.
58. Kumar, A., Gaur, V.S, Goel, A. & Gupta, A.K. De novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol. Biol. Rep. 33, 905–922 (2015).
59. Jo, Y., Lian, S., Cho, J.K., Choi, H., Kim, S.M.,, S.L. et al. De novo transcriptome assembly of Setatria italica variety Taejin. Genome Data 5(8), 121–122 (2016) doi: 10.1016/j.gdata.
60. Zhang, Y, Xia, H., Yuan, M., Zhao, C., Li, A. & Wang, X. Cloning and expression analysis of peanut (Arachis hypogaea L.) CHI gene. Elect.c J. Biotech. 15 (1), 5 (2012) doi: 10.2225/vol15-issue1-fulltext-6.
61. Yue, R., Lu, C., Qi, J., Han, X., Yan, S., Guo, S. et al. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front. Plant Sci. 7, 1298 (2016).
62. Hamid, R., Jacob, F., Marashi, H., Rathod, V. & Tomar, R.S. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 112, 3354–3364 (2020).
63. Hamid, R., Marashi, H., Tomar, R.S., Shafaroudi, S.M. & Sabara, P.H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.), Plos One 14, e0218381 (2019).
64. Kalia, R.K., Rai, M.K., Kalia, S. et al. Microsatellite markers: an overview of the recent progress in plants. Euphytica 177, 309–334 (2011). https://doi.org/10.1007/s10681-010-0286-9.
65. Miah, G., Rafii, M.Y., Ismail, M. R., Puteh, A. B., Rahim, H.A., Asfaliza, R. & Latif, M.A. Blast resistance in rice: a review of conventional breeding to molecular approaches. Molecular Biology Reports 40, 2369–2388 (2012).
66. Lawson, M.J. & Zhang, L. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7, R14 (2006).
67. Kawakami, Y. & Bhullar, N.K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J. Integr. Plant Biol. 60, 1–32 (2018).
68. Brumbarova, T., Bauer, P. & Ivanov, R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 20, 124–133 (2015)
69. Connorton, J.M., Balk, J. & Rodrı´guez-Celma, J. Iron homeostasis in plants—a brief overview. Metallomics 9, 813–823 (2017).
70. Lee, S., & An, G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416 (2009).
71. Boonyaves, K., Wu, T.Y., Gruissem, W. & Bhullar, N.K. Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front. Plant Sci. 8, 130 (2017).
72. Narayanan, N., Beyene, G., Chauhan, R.D. et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol 37, 144–151 (2019) https://doi.org/10.1038/s41587-018-0002-1.
73. Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F., Walker, E.L. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409, 346–349 (2001).
74. Masuda, H., Suzuki, M., Morikawa, K.C. et al. Increase in Iron and Zinc Concentrations in Rice Grains via the Introduction of Barley Genes Involved in Phytosiderophore Synthesis. Rice 1,100–108 (2008) https://doi.org/10.1007/s12284-008-9007-6.
75. Lee, S., Chiecko, J.C, Kim, S.A., Walker, E.L., Lee, Y., Lou, M., An, G. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150, 786–800 (2009).