This study proposes a method where the flow field variables are communicated between multiple separate moving computational domains and simulates the flow interaction of multiple moving objects. Instead of using the conventional approach with a single fixed computational domain covering the whole flow field, this method advances the moving computational domain (MCD) method in which the computational domain itself moves in line with the motions of an object inside. The computational domains created around each object move independently, and the flow fields of each domain interact where the flows cross. This eliminates the spatial restriction for simulating multiple moving objects. After the results of the shock tube test verify that the interpolation has been achieved between grids, a validation test is conducted in which two spheres are crossed, and the forces exerted on one object due to the other’s crossing at a short distance are calculated. The results verify the reliability of this method and show that it is applicable to the flow interaction of multiple moving objects.