[1] Sato, Y., Ichihashi, K., Kikuchi, Y., Shiraishi, H. & Momoi, M. Y. Autonomic function in adolescents with orthostatic dysregulation measured by heart rate variability. Hypertens Res. 30, 601-605 (2007).
[2] Ghiasi, S., Greco, A., Barbieri, R., Scilingo, E. P., & Valenza, G. Assessing autonomic function from electrodermal activity and heart rate variability during cold-pressor test and emotional challenge. Sci. Rep. 10, 1-13 (2020).
[3] Fairchild, K. D., Srinivasan, V., Randall Moorman, J., Gaykema, R. P., & Goehler, L. E., Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Regul Integr Comp Physiol. 300, R330-R339 (2011).
[4] Ahmad, S. et al. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PloS One. 4, e6642 (2009).
[5] Griffin, M. P., & Moorman, J. R. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics. 107, 97-104 (2001).
[6] Mattéi, J. et al. Autonomic dysfunction in 2009 pandemic influenza A (H1N1) virus-related infection: A pediatric comparative study. Auton Neurosci. 162, 77-83 (2011).
[7] La-Orkhun, V., Supachokchaiwattana, P., Lertsapcharoen, P., & Khongphatthanayothin, A. Spectrum of cardiac rhythm abnormalities and heart rate variability during the convalescent stage of dengue virus infection: a Holter study. Ann Trop Paediatr. 31, 123-128 (2011).
[8] Hasty, F., García, G., Dávila, H., Wittels, S. H., Hendricks, S., & Chong, S. Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients. Mil. Med. 186, e34-e38 (2021).
[9] Aragón-Benedí, C. et al. Is the heart rate variability monitoring using the analgesia nociception index a predictor of illness severity and mortality in critically ill patients with COVID-19? A pilot study. PLoS One. 16, e0249128 (2021).
[10] Kaliyaperumal, D., Karthikeyan, R. K., Alagesan, M., & Ramalingam, S. Characterization of cardiac autonomic function in COVID-19 using heart rate variability: a hospital based preliminary observational study. J Basic Clin Physiol Pharmacol. 32, 247-253 (2021).
[11] Buchhorn, R., Baumann, C., & Willaschek, C. Heart rate variability in a patient with coronavirus disease 2019. Int. Cardiovasc. Forum J. 20, 34-36 (2020).
[12] Kamaleswaran, R., Sadan, O., Kandiah, P., Li, Q., Blum, J. M., Coopersmith, C. M., & Buchman, T. G. Changes in non-linear and time-domain heart rate variability indices between critically ill COVID-19 and all-cause sepsis patients-a retrospective study. medRxiv (2020).
[13] Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability. Standards of measurements, physiological interpretation, and clinical use. Circulation. 93, 1043-1065 (1996).
[14] Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031-1051 (2006).
[15] Acharya U.R., Joseph K.P., Kannathal N., Min L.C., Suri J.S. Heart Rate Variability in Advances in Cardiac Signal Processing (eds. Acharya U.R., Suri J.S., Spaan J.A.E., Krishnan S.M.) 121-165 (Berlin Heidelberg: Springer-Verlag, 2007).
[16] Champéroux, P., Fesler, P., Judé, S., Richard, S., Le Guennec, J. Y., & Thireau, J. High frequency autonomic modulation: a new model for analysis of autonomic cardiac control. Br. J. Pharmacol. 175, 3131-3143 (2018).
[17] Billman, G. E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol., 4, 26 (2013).
[18] Togo, F., Kiyono, K., Struzik, Z. R., & Yamamoto, Y. Unique very low-frequency heart rate variability during deep sleep in humans. IEEE Trans. Biomed. Eng. 53, 28-34 (2005).
[19] Tripathi K. K. Very low frequency oscillations in the power spectra of heart rate variability during dry supine immersion and exposure to non-hypoxic hypobaria. Physiol. Meas. 32, 717 (2011).
[20] Soliński, M., Kuklik, P., Gierałtowski, J., Baranowski, R., Graff, B., & Żebrowski, J. The effect of persistent U-shaped patterns in RR night-time series on the heart rate variability complexity in healthy humans. Physiol. Meas. 41, 065001 (2020).
[21] Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A., & Cerutti, S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 48, 1282-1291 (2001).
[22] Draghici, A. E., & Taylor, J. A. The physiological basis and measurement of heart rate variability in humans. J. Physiol. Anthropol. 35, 22 (2016).
[23] Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 5, 82-87 (1995).
[24] Willson, K., Francis, D. P., Wensel, R., Coats, A. J., & Parker, K. H. Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability. Physiol. Meas., 23, 385-401 (2002).
[25] Soliński, M., Kuklik, P., Gierałtowski, J., Baranowski, R., Graff, B., & Żebrowski, J. Reply to comment on ‘The effect of persistent U-shaped patterns in RR night-time series on the heart rate variability complexity in healthy humans. Physiol. Meas. 42, 018003 (2021).
[26] Kantelhardt, J. W., Bauer, A., Schumann, A. Y., Barthel, P., Schneider, R., Malik, M., & Schmidt, G. Phase-rectified signal averaging for the detection of quasi-periodicities and the prediction of cardiovascular risk. Chaos, 17, 015112 (2007).
[27] Bauer, A. et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet., 367, 1674-1681 (2006).
[28] Hu, W. et al. Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance. Sci. Rep. 6, 23617 (2016).
[29] Xu, Y. H., Wang, X. D., Yang, J. J., Zhou, L., & Pan, Y. C. Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke. Clin. Interv. Aging. 11, 293 (2016).
[30] Buchner, T. et al. On the nature of heart rate variability in a breathing normal subject: a stochastic process analysis. Chaos, 19, 028504 (2009).
[31] Sobiech, T., Buchner, T., Krzesiński, P., & Gielerak, G. Cardiorespiratory coupling in young healthy subjects. Physiol. Meas. 38, 2186-2202 (2017).
[32] Guzzetti, S. et al. Symbolic dynamics of heart rate variability: a probe to investigate cardiac autonomic modulation. Circulation, 112, 465-470 (2005).
[33] Stein, P. K., Rottman, J. N., Hall, A. F., & Kleiger, R. E. Heart rate variability in a case of pheochromocytoma. Clin. Auton. Res. 6, 41-44 (1996).
[34] Milovanovic, B. et al. Assessment of autonomic nervous system dysfunction in the early phase of infection with SARS-CoV-2 virus. Front. Neurosci. 15, 640835 (2021).
[35] Pocock, G., Richards, C. D., & Richards, D. A. Human Physiology (Oxford University Press, 2017).
[36] Tudoran, C. et al. Evidence of pulmonary hypertension after SARS-CoV-2 infection in subjects without previous significant cardiovascular pathology. J. Clin. Med. 10, 199 (2021).
[37] Barizien, N., Le Guen, M., Russel, S., Touche, P., Huang, F., & Vallée, A, Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 11, 1-7 (2021).