1 Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337-1350, doi:10.1016/j.cell.2013.11.002 (2013).
2 Zhu, C. et al. Somatostatin Neurons in the Basal Forebrain Promote High-Calorie Food Intake. Cell reports 20, 112-123, doi:10.1016/j.celrep.2017.06.007 (2017).
3 Land, B. B. et al. Medial prefrontal D1 dopamine neurons control food intake. Nature neuroscience 17, 248-253, doi:10.1038/nn.3625 (2014).
4 Sweeney, P., Li, C. & Yang, Y. Appetite suppressive role of medial septal glutamatergic neurons. Proceedings of the National Academy of Sciences of the United States of America 114, 13816-13821, doi:10.1073/pnas.1707228114 (2017).
5 Deem, J. D. et al. Cold-induced hyperphagia requires AgRP neuron activation in mice. eLife 9, doi:10.7554/eLife.58764 (2020).
6 Nakamura, Y. & Nakamura, K. Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflugers Archiv : European journal of physiology 470, 823-837, doi:10.1007/s00424-017-2090-z (2018).
7 Tansey, E. A. & Johnson, C. D. Recent advances in thermoregulation. Advances in physiology education 39, 139-148, doi:10.1152/advan.00126.2014 (2015).
8 Yu, S. et al. Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis. The Journal of neuroscience : the official journal of the Society for Neuroscience 36, 5034-5046, doi:10.1523/JNEUROSCI.0213-16.2016 (2016).
9 Brobeck, J. R. Food Intake as a Mechanism of Temperature Regulation. Yale Journal ofBiology and Medicine 20, 545-552 (1948).
10 Johnson, R. E. & Kark, R. M. Environment and Food Intake in Man. Science 105, 378-379, doi:10.1126/science.105.2728.378 (1947).
11 Mandic, I. et al. The effects of exercise and ambient temperature on dietary intake, appetite sensation, and appetite regulating hormone concentrations. Nutrition & metabolism 16, 29, doi:10.1186/s12986-019-0348-5 (2019).
12 Johnson, C. D. et al. Energy expenditure and intake during Special Operations Forces field training in a jungle and glacial environment. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 43, 381-386, doi:10.1139/apnm-2017-0622 (2018).
13 Suwanapaporn, P., Chaiyabutr, N. & Thammacharoen, S. A low degree of high ambient temperature decreased food intake and activated median preoptic and arcuate nuclei. Physiology & behavior 181, 16-22, doi:10.1016/j.physbeh.2017.08.027 (2017).
14 Spector, N. H., Brobeck, J. R. & Hamilton, C. L. Feeding and core temperature in albino rats: changes induced by preoptic heating and cooling. Science 161, 286-288 (1968).
15 Hamilton, C. L. & Brobeck, J. R. Food Intake and Temperature Regulation in Rats with Rostral Hypothalamic Lesions. The American journal of physiology 207, 291-297, doi:10.1152/ajplegacy.1964.207.2.291 (1964).
16 Yu, S. et al. Preoptic leptin signaling modulates energy balance independent of body temperature regulation. eLife 7, doi:10.7554/eLife.33505 (2018).
17 Tan, C. L. et al. Warm-Sensitive Neurons that Control Body Temperature. Cell 167, 47-59 e15, doi:10.1016/j.cell.2016.08.028 (2016).
18 Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115-121, doi:10.1038/s41586-020-2387-5 (2020).
19 Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109-114, doi:10.1038/s41586-020-2163-6 (2020).
20 Andersson, B. & Larsson, B. Influence of local temperature changes in the preoptic area and rostral hypothalamus on the regulation of food and water intake. Acta physiologica Scandinavica 52, 75-89, doi:10.1111/j.1748-1716.1961.tb02203.x (1961).
21 Hamilton, C. L. & Brobeck, J. R. Food intake and activity of rats with rostral hypothalamic lesions. Proc Soc Exp Biol Med 122, 270-272, doi:10.3181/00379727-122-31108 (1966).
22 Mascarenhas, J. F. Role of medial preoptic area (MPOA) in the reproductive function and feeding behavior in rats. Indian journal of physiology and pharmacology 30, 232-240 (1986).
23 Banet, M. F. & Seguin, J. J. Effects of preoptic cooling in rats acclimated to 21 and 4 degree C. J Appl Physiol 29, 385-388, doi:0.1152/jappl.1970.29.3.385 (1970).
24 Ingram, D. L. Effects of heating and cooling the hypothalamus on food intake in the pig. Brain research 11, 714-716, doi:10.1016/0006-8993(68)90165-0 (1968).
25 Zhang, Z. et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nature communications 11, 6378, doi:10.1038/s41467-020-20050-1 (2020).
26 Kaltsas, G. A. et al. Hypothalamo-pituitary abnormalities in adult patients with langerhans cell histiocytosis: clinical, endocrinological, and radiological features and response to treatment. The Journal of clinical endocrinology and metabolism 85, 1370-1376, doi:10.1210/jcem.85.4.6501 (2000).
27 Roemmler-Zehrer, J. et al. Food intake regulating hormones in adult craniopharyngioma patients. European journal of endocrinology 170, 627-635, doi:10.1530/EJE-13-0832 (2014).
28 Roth, C. L., Gebhardt, U. & Muller, H. L. Appetite-regulating hormone changes in patients with craniopharyngioma. Obesity (Silver Spring) 19, 36-42, doi:10.1038/oby.2010.80 (2011).
29 Slawski, B. A. & Buntin, J. D. Preoptic area lesions disrupt prolactin-induced parental feeding behavior in ring doves. Hormones and behavior 29, 248-266, doi:10.1006/hbeh.1995.1018 (1995).
30 Zhang, G. W. et al. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nature neuroscience 24, 516-528, doi:10.1038/s41593-020-00784-3 (2021).
31 Simerly, R. B. & Swanson, L. W. Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. The Journal of comparative neurology 270, 209-242, doi:10.1002/cne.902700205 (1988).
32 Zheng-Dong Zhao, W. Z. Y., Cuicui Gao, Xin Fu, Wen Zhang,Qian Zhou, Wanpeng Chen, Xinyan Ni, Jun-Kai Lin, Juan Yang, Xiao-Hong Xu, Wei L. Shen. A hypothalamic circuit that controls body temperature. Proceedings of the National Academy of Sciences of the United States of America 114, E1755, doi:10.1073/pnas.1701881114 (2017).
33 Li, X. Y. et al. AGRP Neurons Project to the Medial Preoptic Area and Modulate Maternal Nest-Building. The Journal of neuroscience : the official journal of the Society for Neuroscience 39, 456-471, doi:10.1523/JNEUROSCI.0958-18.2018 (2019).
34 Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell metabolism 19, 741-756, doi:10.1016/j.cmet.2014.02.007 (2014).
35 Sutton, A. K. et al. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 15306-15318, doi:10.1523/JNEUROSCI.0226-14.2014 (2014).
36 Pei, H., Sutton, A. K., Burnett, K. H., Fuller, P. M. & Olson, D. P. AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Molecular metabolism 3, 209-215, doi:10.1016/j.molmet.2013.12.006 (2014).
37 Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature neuroscience 14, 351-355, doi:10.1038/nn.2739 (2011).
38 Jennings, J. H. et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160, 516-527, doi:10.1016/j.cell.2014.12.026 (2015).
39 Dimicco, J. A. & Zaretsky, D. V. The dorsomedial hypothalamus: a new player in thermoregulation. American journal of physiology. Regulatory, integrative and comparative physiology 292, R47-63, doi:10.1152/ajpregu.00498.2006 (2007).
40 Nakamura, K. & Morrison, S. F. Central efferent pathways for cold-defensive and febrile shivering. The Journal of physiology 589, 3641-3658, doi:10.1113/jphysiol.2011.210047 (2011).
41 Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nature neuroscience 11, 62-71, doi:10.1038/nn2027 (2008).
42 Stefanos, S., Giada, S., Grace, L. & David, J. A. Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proceedings of the National Academy of Sciences of the United States of America 117, 25789-25799, doi:10.1073/pnas.2011782117/-/DCSupplemental (2020).
43 Sato, K. et al. Amygdalohippocampal Area Neurons That Project to the Preoptic Area Mediate Infant-Directed Attack in Male Mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 40, 3981-3994, doi:10.1523/JNEUROSCI.0438-19.2020 (2020).
44 Sohn, J. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends in neurosciences 36, 504-512, doi:10.1016/j.tins.2013.05.003 (2013).
45 Alhadeff, A. L. et al. A Neural Circuit for the Suppression of Pain by a Competing Need State. Cell 173, 140-152 e115, doi:10.1016/j.cell.2018.02.057 (2018).
46 Burnett, C. J. et al. Hunger-Driven Motivational State Competition. Neuron 92, 187-201, doi:10.1016/j.neuron.2016.08.032 (2016).
47 Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nature neuroscience 19, 734-741, doi:10.1038/nn.4274 (2016).
48 Jikomes, N., Ramesh, R. N., Mandelblat-Cerf, Y. & Andermann, M. L. Preemptive Stimulation of AgRP Neurons in Fed Mice Enables Conditioned Food Seeking under Threat. Current biology : CB 26, 2500-2507, doi:10.1016/j.cub.2016.07.019 (2016).
49 Yang, W. Z. et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Science advances 6, doi:10.1126/sciadv.abb9414 (2020).
50 Flouris, A. D. Functional architecture of behavioural thermoregulation. European journal of applied physiology 111, 1-8, doi:10.1007/s00421-010-1602-8 (2011).
51 Mayer, J. The glucostatic theory of regulation of food intake and the problem of obesity. Bulletin. New England Medical Center 14, 43-49 (1952).
52 Kennedy, G. C. The role of depot fat in the hypothalamic control of food intake in the rat. Proceedings of the Royal Society of London. Series B, Biological sciences 140, 578-596, doi:10.1098/rspb.1953.0009 (1953).
53 Brobeck, J. R. Food intake as a mechanism of temperature regulation. Yale J. Biol. Med 20, 545-552 (1948).
54 Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, doi:10.1126/science.aau5324 (2018).
55 Xu, Y., Elmquist, J. K. & Fukuda, M. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Annals of the New York Academy of Sciences 1243, 1-14, doi:10.1111/j.1749-6632.2011.06248.x (2011).
56 Garfield, A. S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nature neuroscience 18, 863-871, doi:10.1038/nn.4011 (2015).
57 Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172-177, doi:10.1038/nature11270 (2012).
58 Nakamura, K. & Morrison, S. F. A thermosensory pathway mediating heat-defense responses. Proceedings of the National Academy of Sciences of the United States of America 107, 8848-8853, doi:10.1073/pnas.0913358107 (2010).
59 Kobayashi, A. & Osaka, T. Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflugers Archiv : European journal of physiology 446, 760-765, doi:10.1007/s00424-003-1119-7 (2003).
60 Geerling, J. C. et al. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am J Physiol-Reg I 310, R41-R54, doi:10.1152/ajpregu.00094.2015 (2016).
61 Wang, T. A. et al. Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron 103, 309-322 e307, doi:10.1016/j.neuron.2019.04.035 (2019).
62 Qualls-Creekmore, E. et al. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion. The Journal of neuroscience : the official journal of the Society for Neuroscience 37, 6053-6065, doi:10.1523/JNEUROSCI.0155-17.2017 (2017).
63 Hagen, C. J. et al. Stimulation of food intake after central galanin is associated with arcuate nucleus activation and does not differ between genetically selected low and high body weight lines of chickens. Neuropeptides 47, 281-285, doi:10.1016/j.npep.2012.11.003 (2013).
64 Sergeant, L., Rodriguez-Dimitrescu, C., Barney, C. C. & Fraley, G. S. Injections of Galanin-Like Peptide directly into the nucleus of the tractus solitarius (NTS) reduces food intake and body weight but increases metabolic rate and plasma leptin. Neuropeptides 62, 37-43, doi:10.1016/j.npep.2016.12.009 (2017).
65 Kyrkouli, S. E., Stanley, B. G. & Leibowitz, S. F. Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. European journal of pharmacology 122, 159-160, doi:10.1016/0014-2999(86)90175-5 (1986).
66 Schick, R. R. et al. Effect of galanin on food intake in rats: involvement of lateral and ventromedial hypothalamic sites. The American journal of physiology 264, R355-361, doi:10.1152/ajpregu.1993.264.2.R355 (1993).
67 Knight, Z. A. et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 151, 1126-1137, doi:10.1016/j.cell.2012.10.039 (2012).
68 Patterson, M. et al. Microinjection of galanin-like peptide into the medial preoptic area stimulates food intake in adult male rats. Journal of neuroendocrinology 18, 742-747, doi:10.1111/j.1365-2826.2006.01473.x (2006).
69 Henry, H. L. & Norman, A. W. Encyclopedia of hormones. (Academic Press, 2003).
70 Takenoya, F. et al. Neuronal interactions between galanin-like-peptide- and orexin- or melanin-concentrating hormone-containing neurons. Regulatory peptides 126, 79-83, doi:10.1016/j.regpep.2004.10.004 (2005).
71 Kageyama, H. et al. Galanin-like peptide promotes feeding behaviour via activation of orexinergic neurones in the rat lateral hypothalamus. Journal of neuroendocrinology 18, 33-41, doi:10.1111/j.1365-2826.2005.01382.x (2006).
72 Reaux-Le Goazigo, A. et al. Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic alpha-MSH release. American journal of physiology. Endocrinology and metabolism 301, E955-966, doi:10.1152/ajpendo.00090.2011 (2011).
73 Lv, S. Y. et al. Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides 33, 132-138, doi:10.1016/j.peptides.2011.11.011 (2012).
74 Sunter, D., Hewson, A. K. & Dickson, S. L. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neuroscience letters 353, 1-4, doi:10.1016/s0304-3940(03)00351-3 (2003).
75 O'Shea, M., Hansen, M. J., Tatemoto, K. & Morris, M. J. Inhibitory effect of apelin-12 on nocturnal food intake in the rat. Nutritional neuroscience 6, 163-167, doi:10.1080/1028415031000111273 (2003).
76 Bloom, F. E., Battenberg, E. L., Rivier, J. & Vale, W. Corticotropin releasing factor (CRF): immunoreactive neurones and fibers in rat hypothalamus. Regulatory peptides 4, 43-48, doi:10.1016/0167-0115(82)90107-0 (1982).
77 Paull, W. K. et al. Immunocytochemical localization of CRF in the ovine hypothalamus. Peptides 3, 183-191, doi:10.1016/0196-9781(82)90049-3 (1982).
78 Reaux, A., Gallatz, K., Palkovits, M. & Llorens-Cortes, C. Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience 113, 653-662, doi:10.1016/s0306-4522(02)00192-6 (2002).
79 McAllen, R. M., Tanaka, M., Ootsuka, Y. & McKinley, M. J. Multiple thermoregulatory effectors with independent central controls. European journal of applied physiology 109, 27-33, doi:10.1007/s00421-009-1295-z (2010).
80 Wang, L., Tian, Y., Kim, J. & Yin, H. The key local segments of human body for personalized heating and cooling. J Therm Biol 81, 118-127, doi:10.1016/j.jtherbio.2019.02.013 (2019).
81 Romanovsky, A. A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. American journal of physiology. Regulatory, integrative and comparative physiology 292, R37-46, doi:10.1152/ajpregu.00668.2006 (2007).
82 Rolls, E. T., Grabenhorst, F. & Parris, B. A. Warm pleasant feelings in the brain. NeuroImage 41, 1504-1513, doi:10.1016/j.neuroimage.2008.03.005 (2008).
83 Johnson, J. M., Minson, C. T. & Kellogg, D. L., Jr. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Comprehensive Physiology 4, 33-89, doi:10.1002/cphy.c130015 (2014).
84 Mundel, T., Bunn, S. J., Hooper, P. L. & Jones, D. A. The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response. Experimental physiology 92, 187-195, doi:10.1113/expphysiol.2006.034934 (2007).
85 Simmons, S. E., Mundel, T. & Jones, D. A. The effects of passive heating and head-cooling on perception of exercise in the heat. European journal of applied physiology 104, 281-288, doi:10.1007/s00421-007-0652-z (2008).
86 Conceicao, E. P. S., Madden, C. J. & Morrison, S. F. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta physiologica (Oxford, England) 225, e13213, doi:10.1111/apha.13213 (2019).
87 Harding, E. C. et al. A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Current biology : CB 28, 2263-2273 e2264, doi:10.1016/j.cub.2018.05.054 (2018).
88 Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nature protocols 9, 171-181, doi:10.1038/nprot.2014.006 (2014).