1 Jarvik, J. Basic Structure and Evolution of Vertebrates. Vol. 1 (Academic Press, 1980).
2 Burr, B. M. & Bennett, M. G. in Freshwater Fishes of North America Vol. 1 (eds M. L. Warren & M. G. Burr) (John Hopkins Univesity Press, 2014).
3 Nelson, J. S. Fishes of the world. 4th edn, (John Wiley, 2006).
4 Near, T. J. et al. Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 109, 13698-13703, doi:10.1073/pnas.1206625109 (2012).
5 Betancur, R. R. et al. The tree of life and a new classification of bony fishes. PLoS currents 5, doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 (2013).
6 Broughton, R. E., Betancur, R. R., Li, C., Arratia, G. & Orti, G. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS currents 5, doi:10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e (2013).
7 Braasch, I. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48, 427-437, doi:10.1038/ng.3526 (2016).
8 Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc Natl Acad Sci U S A 115, 6249-6254, doi:10.1073/pnas.1719358115 (2018).
9 Faircloth, B. C., Sorenson, L., Santini, F. & Alfaro, M. E. A Phylogenomic Perspective on the Radiation of Ray-Finned Fishes Based upon Targeted Sequencing of Ultraconserved Elements (UCEs). PLoS ONE 8, doi:10.1371/journal.pone.0065923 (2013).
10 Clarke, J. T., Lloyd, G. T. & Friedman, M. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc Natl Acad Sci U S A 113, 11531-11536, doi:10.1073/pnas.1607237113 (2016).
11 Braasch, I. et al. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. J Exp Zool B Mol Dev Evol, doi:10.1002/jez.b.22589 (2014).
12 Patterson, C. in Interrelationships of Fishes Vol. Supplement 1 (eds P. H. Greenwood, R. S. Miles, & C. Patterson) 233-305 (Academic Press, 1973).
13 Grande, L. An Empirical Synthetic Pattern Study of Gars (Lepisosteiformes) and Closely Related Species, Based Mostly on Skeletal Anatomy. The Resurrection of Holostei. Copeia, 1-863 (2010).
14 Sallan, L. C. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biological reviews of the Cambridge Philosophical Society, doi:10.1111/brv.12086 (2014).
15 Grande, L. & Bemis, W. E. A Comprehensive Phylogenetic Study of Amiid Fishes (Amiidae) Based on Comparative Skeletal Anatomy. an Empirical Search for Interconnected Patterns of Natural History. Journal of Vertebrate Paleontology 18, 1-696, doi:10.1080/02724634.1998.10011114 (1998).
16 Majtanova, Z., Symonova, R., Arias-Rodriguez, L., Sallan, L. & Rab, P. "Holostei versus Halecostomi" Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. J Exp Zool B Mol Dev Evol 328, 620-628, doi:10.1002/jez.b.22720 (2017).
17 Amores, A. et al. Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711-1714 (1998).
18 Taylor, J. S., Braasch, I., Frickey, T., Meyer, A. & Van de Peer, Y. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13, 382-390, doi:10.1101/gr.640303 (2003).
19 Braasch, I. & Postlethwait, J. H. in Polyploidy and Genome Evolution (eds P. S. Soltis & D. E. Soltis) Ch. 17, 341-383 (Springer, 2012).
20 Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946-957, doi:10.1038/nature03025 (2004).
21 Takezaki, N. Global Rate Variation in Bony Vertebrates. Genome Biol Evol 10, 1803-1815, doi:10.1093/gbe/evy125 (2018).
22 Clement, Y., Torbey, P., Gilardi-Hebenstreit, P. & Crollius, H. R. Enhancer-gene maps in the human and zebrafish genomes using evolutionary linkage conservation. Nucleic Acids Res 48, 2357-2371, doi:10.1093/nar/gkz1199 (2020).
23 Yuan, X. et al. Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nat Commun 9, 4977, doi:10.1038/s41467-018-07451-z (2018).
24 Peskin, B. et al. Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine. Curr Biol 30, 2805-2814 e2803, doi:10.1016/j.cub.2020.05.037 (2020).
25 Sire, J. Y., Donoghue, P. C. & Vickaryous, M. K. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat 214, 409-440, doi:10.1111/j.1469-7580.2009.01046.x (2009).
26 Funk, E., Lencer, E. & McCune, A. Dorsoventral inversion of the air-filled organ (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected embryonic tissue. J Exp Zool B Mol Dev Evol, doi:10.1002/jez.b.22998 (2020).
27 Funk, E. C., Breen, C., Sanketi, B. D., Kurpios, N. & McCune, A. Changes in Nkx2.1, Sox2, Bmp4 and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes. Evolution and Development in press (2020).
28 Chapman, J. A. et al. Meraculous: de novo genome assembly with short paired-end reads. PLoS One 6, e23501, doi:10.1371/journal.pone.0023501 (2011).
29 Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26, 342-350, doi:10.1101/gr.193474.115 (2016).
30 Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293, doi:10.1126/science.1181369 (2009).
31 Ohno, S. et al. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26, 35-40, doi:10.1007/BF00319498 (1969).
32 Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067, doi:10.1093/bioinformatics/btm071 (2007).
33 Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212, doi:10.1093/bioinformatics/btv351 (2015).
34 Pasquier, J. et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 17, 368, doi:10.1186/s12864-016-2709-z (2016).
35 Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491, doi:10.1186/1471-2105-12-491 (2011).
36 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 238, doi:10.1186/s13059-019-1832-y (2019).
37 Dean, R. & Mank, J. E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol 27, 1443-1453, doi:10.1111/jeb.12345 (2014).
38 Feron, R. et al. RADSex: a computational workflow to study sex determination using Restriction Site-Associated DNA Sequencing data. bioRxiv, 2020.2004.2022.054866, doi:10.1101/2020.04.22.054866 (2020).
39 Du, K. et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat Ecol Evol 4, 841-852, doi:10.1038/s41559-020-1166-x (2020).
40 Sacerdot, C., Louis, A., Bon, C., Berthelot, C. & Roest Crollius, H. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol 19, 166, doi:10.1186/s13059-018-1559-1 (2018).
41 Moret, B. M. E., Tang, J., Wang, L.-S. & Warnow, T. Steps toward accurate reconstructions of phylogenies from gene-order data. Journal of Computer and System Sciences 65, 508-525, doi:https://doi.org/10.1016/S0022-0000(02)00007-7 (2002).
42 Farris, J. S. Phylogenetic Analysis Under Dollo's Law. Systematic Biology 26, 77-88, doi:10.1093/sysbio/26.1.77 (1977).
43 Lin, Y., Hu, F., Tang, J. & Moret, B. M. Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. Pac Symp Biocomput, 285-296 (2013).
44 Wcisel, D. J., Ota, T., Litman, G. W. & Yoder, J. A. Spotted Gar and the Evolution of Innate Immune Receptors. J Exp Zool B Mol Dev Evol 328, 666-684, doi:10.1002/jez.b.22738 (2017).
45 Trowsdale, J. The MHC, disease and selection. Immunol Lett 137, 1-8, doi:10.1016/j.imlet.2011.01.002 (2011).
46 MHCSequencingConsortium. Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Nature 401, 921-923, doi:10.1038/44853 (1999).
47 Ohta, Y. et al. Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc Natl Acad Sci U S A 97, 4712-4717, doi:10.1073/pnas.97.9.4712 (2000).
48 Flajnik, M. F., Ohta, Y., Namikawa-Yamada, C. & Nonaka, M. Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev 167, 59-67, doi:10.1111/j.1600-065x.1999.tb01382.x (1999).
49 Dijkstra, J. M., Grimholt, U., Leong, J., Koop, B. F. & Hashimoto, K. Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evol Biol 13, 260, doi:10.1186/1471-2148-13-260 (2013).
50 Grimholt, U. et al. A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 15, 32, doi:10.1186/s12862-015-0309-1 (2015).
51 Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11, 47-59, doi:10.1038/nrg2703 (2010).
52 Flajnik, M. F. A cold-blooded view of adaptive immunity. Nat Rev Immunol 18, 438-453, doi:10.1038/s41577-018-0003-9 (2018).
53 Salinas, I., Zhang, Y. A. & Sunyer, J. O. Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35, 1346-1365, doi:10.1016/j.dci.2011.11.009 (2011).
54 Fillatreau, S. et al. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 4, 28, doi:10.3389/fimmu.2013.00028 (2013).
55 Danilova, N., Bussmann, J., Jekosch, K. & Steiner, L. A. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 6, 295-302, doi:10.1038/ni1166 (2005).
56 Hansen, J. D., Landis, E. D. & Phillips, R. B. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proc Natl Acad Sci U S A 102, 6919-6924, doi:10.1073/pnas.0500027102 (2005).
57 Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11, 827-835, doi:10.1038/ni.1913 (2010).
58 Salinas, I. The Mucosal Immune System of Teleost Fish. Biology (Basel) 4, 525-539, doi:10.3390/biology4030525 (2015).
59 Piazzon, M. C. et al. Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Front Immunol 7, 637, doi:10.3389/fimmu.2016.00637 (2016).
60 Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787, doi:10.1038/35021228 (2000).
61 Fitzgerald, K. A. & Kagan, J. C. Toll-like Receptors and the Control of Immunity. Cell 180, 1044-1066, doi:10.1016/j.cell.2020.02.041 (2020).
62 Aoki, T., Hikima, J., Hwang, S. D. & Jung, T. S. Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol 35, 1689-1702, doi:10.1016/j.fsi.2013.02.005 (2013).
63 Quiniou, S. M., Boudinot, P. & Bengten, E. Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: identification of novel fish TLRs. Immunogenetics 65, 511-530, doi:10.1007/s00251-013-0694-9 (2013).
64 Kawasaki, K. et al. SCPP Genes and Their Relatives in Gar: Rapid Expansion of Mineralization Genes in Osteichthyans. J Exp Zool B Mol Dev Evol 328, 645-665, doi:10.1002/jez.b.22755 (2017).
65 Kawasaki, K. & Weiss, K. M. Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci U S A 100, 4060-4065, doi:10.1073/pnas.0638023100 (2003).
66 Qu, Q., Haitina, T., Zhu, M. & Ahlberg, P. E. New genomic and fossil data illuminate the origin of enamel. Nature 526, 108-111, doi:10.1038/nature15259 (2015).
67 Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213-1218, doi:10.1038/nmeth.2688 (2013).
68 Ballard, W. W. Stages and rates of normal development in the holostean fish, Amia calva. Journal of Experimental Zoology 238, 337-354, doi:10.1002/jez.1402380308 (1986).
69 Heinz, S. et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Molecular Cell 38, 576-589, doi:10.1016/j.molcel.2010.05.004 (2010).
70 Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser - A database of tissue-specific human enhancers. Nucleic Acids Research 35, doi:10.1093/nar/gkl822 (2007).
71 Abbasi, A. A. et al. Human intronic enhancers control distinct sub-domains of Gli3 expression during mouse CNS and limb development. BMC developmental biology 10, 44, doi:10.1186/1471-213X-10-44 (2010).
72 Adachi, N., Robinson, M., Goolsbee, A. & Shubin, N. H. Regulatory evolution of Tbx5 and the origin of paired appendages. Proc Natl Acad Sci U S A 113, 10115-10120, doi:10.1073/pnas.1609997113 (2016).
73 Menke, D. B., Guenther, C. & Kingsley, D. M. Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development 135, 2543-2553, doi:10.1242/dev.017384 (2008).
74 Zhang, W. et al. Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol 11, 111, doi:10.1186/1741-7007-11-111 (2013).
75 Pijuan-Sala, B. et al. Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nature Cell Biology 22, 487-497, doi:10.1038/s41556-020-0489-9 (2020).
76 Tena, J. J. et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res 24, 1075-1085, doi:10.1101/gr.163915.113 (2014).
77 Li, Y. et al. Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis. Genome Res 30, 924-937, doi:10.1101/gr.258871.119 (2020).
78 Graham, J. B. Air-Breathing Fishes. (Academic Press, 1997).
79 Kuraku, S. et al. Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proc Natl Acad Sci U S A 105, 6679-6683, doi:10.1073/pnas.0710947105 (2008).
80 Powers, T. P. & Amemiya, C. T. Evidence for a Hox14 paralog group in vertebrates. Curr Biol 14, R183-184, doi:10.1016/j.cub.2004.02.015 (2004).
81 Tulenko, F. J. et al. HoxD expression in the fin-fold compartment of basal gnathostomes and implications for paired appendage evolution. Sci Rep 6, 22720, doi:10.1038/srep22720 (2016).
82 Feiner, N., Ericsson, R., Meyer, A. & Kuraku, S. Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members. J Exp Zool B Mol Dev Evol 316, 515-525, doi:10.1002/jez.b.21426 (2011).
83 Wood, A. Early pectoral fin development and morphogenesis of the apical ectodermal ridge in the killifish, Aphyosemion scheeli. The Anatomical Record 204, 349-356, doi:10.1002/ar.1092040408 (1982).
84 Fisher, S., Jagadeeswaran, P. & Halpern, M. E. Radiographic analysis of zebrafish skeletal defects. Dev Biol 264, 64-76, doi:10.1016/s0012-1606(03)00399-3 (2003).
85 Huang, C. C. et al. Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in zebrafish caudal fins. Dev Biol 332, 360-370, doi:10.1016/j.ydbio.2009.06.003 (2009).
86 Zhang, J. et al. Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466, 234-237, doi:10.1038/nature09137 (2010).
87 Duran, I. et al. Collagen duplicate genes of bone and cartilage participate during regeneration of zebrafish fin skeleton. Gene Expr Patterns 19, 60-69, doi:10.1016/j.gep.2015.07.004 (2015).
88 Duran, I., Mari-Beffa, M., Santamaria, J. A., Becerra, J. & Santos-Ruiz, L. Actinotrichia collagens and their role in fin formation. Dev Biol 354, 160-172, doi:10.1016/j.ydbio.2011.03.014 (2011).
89 Wade, C., Brinas, I., Welfare, M., Wicking, C. & Farlie, P. G. Twist2 contributes to termination of limb bud outgrowth and patterning through direct regulation of Grem1. Dev Biol 370, 145-153, doi:10.1016/j.ydbio.2012.07.025 (2012).
90 Yashiro, K. et al. Regulation of Retinoic Acid Distribution Is Required for Proximodistal Patterning and Outgrowth of the Developing Mouse Limb. Developmental Cell 6, 411-422, doi:10.1016/S1534-5807(04)00062-0 (2004).
91 Kawakami, Y. et al. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 131, 4763-4774, doi:10.1242/dev.01331 (2004).
92 Gillis, J. A., Dahn, R. D. & Shubin, N. H. Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc Natl Acad Sci U S A 106, 5720-5724, doi:10.1073/pnas.0810959106 (2009).
93 Tulenko, F. J. et al. Fin-fold development in paddlefish and catshark and implications for the evolution of the autopod. Proc Biol Sci 284, doi:10.1098/rspb.2016.2780 (2017).
94 Jovelin, R. et al. Duplication and divergence of fgf8 functions in teleost development and evolution. J Exp Zool B Mol Dev Evol 308, 730-743, doi:10.1002/jez.b.21193 (2007).
95 Hodgkinson, V. S., Ericsson, R., Johanson, Z. & Joss, J. M. P. The apical ectodermal ridge in the pectoral fin of the Australian Lungfish (Neoceratodus forsteri): keeping the fin to limb transition in the fold. Acta Zoologica 90, 253-263, doi:10.1111/j.1463-6395.2008.00349.x (2009).
96 Gehrke, A. R. & Shubin, N. H. Cis-regulatory programs in the development and evolution of vertebrate paired appendages. Semin Cell Dev Biol 57, 31-39, doi:10.1016/j.semcdb.2016.01.015 (2016).
97 Gross, J. B., Kerney, R., Hanken, J. & Tabin, C. J. Molecular anatomy of the developing limb in the coqui frog, Eleutherodactylus coqui. Evol Dev 13, 415-426, doi:10.1111/j.1525-142X.2011.00500.x (2011).
98 Doroba, C. K. & Sears, K. E. The divergent development of the apical ectodermal ridge in the marsupial Monodelphis domestica. Anat Rec (Hoboken) 293, 1325-1332, doi:10.1002/ar.21183 (2010).
99 Purushothaman, S., Elewa, A. & Seifert, A. W. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. Elife 8, doi:10.7554/eLife.48507 (2019).
100 Marinic, M., Aktas, T., Ruf, S. & Spitz, F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev Cell 24, 530-542, doi:10.1016/j.devcel.2013.01.025 (2013).
101 Komisarczuk, A. Z., Kawakami, K. & Becker, T. S. Cis-regulation and chromosomal rearrangement of the fgf8 locus after the teleost/tetrapod split. Dev Biol 336, 301-312, doi:10.1016/j.ydbio.2009.09.029 (2009).
102 Schultze, H.-P. & Wiley, E. O. in Living Fossils (eds N. Eldredge & S.M. Stanley) 153-159 (Springer, 1984).
103 Scarnecchia, D. L. A Reappraisal of Gars and Bowfins in Fishery Management. Fisheries 17, 6-12, doi:10.1577/1548-8446(1992)017<0006:Arogab>2.0.Co;2 (1992).
104 Smith, N. G., Daugherty, D. J., Schlechte, J. W. & Buckmeier, D. L. Modeling the Responses of Alligator Gar Populations to Harvest under Various Length-Based Regulations: Implications for Conservation and Management. Transactions of the American Fisheries Society 147, 665-673, doi:10.1002/tafs.10040 (2018).
105 Sinopoli, D. Morphological Variation of Bowfin (Amiidae: Amia calva Linnaeus 1766) Populations from the Mississippi River Basin: Taxonomic and Conservation Implications. Master of Science thesis, State University of New York, (2019).
106 Braasch, I. et al. Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods. Comp Biochem Physiol C Toxicol Pharmacol 163, 24-36, doi:10.1016/j.cbpc.2014.01.005 (2014).
107 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).
108 Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. http://www.repeatmasker.org (2008).
109 Schartl, M. et al. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45, 567-572, doi:10.1038/ng.2604 (2013).
110 Amemiya, C. T. et al. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311-316, doi:10.1038/nature12027 (2013).
111 Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16, 418-420, doi:10.1016/s0168-9525(00)02093-x (2000).
112 Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2013).
113 Smith, C. D. et al. Improved repeat identification and masking in Dipterans. Gene 389, 1-9, doi:10.1016/j.gene.2006.09.011 (2007).
114 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of molecular biology 215, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990).
115 Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31, doi:10.1186/1471-2105-6-31 (2005).
116 Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59, doi:10.1186/1471-2105-5-59 (2004).
117 Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 Suppl 2, ii215-225, doi:10.1093/bioinformatics/btg1080 (2003).
118 Bowman, M. J., Pulman, J. A., Liu, T. L. & Childs, K. L. A modified GC-specific MAKER gene annotation method reveals improved and novel gene predictions of high and low GC content in Oryza sativa. BMC Bioinformatics 18, 522, doi:10.1186/s12859-017-1942-z (2017).
119 Bateman, A. et al. The Pfam Protein Families Database. http://www.sanger.ac.uk/Software/Pfam/ (2000).
120 Eddy, S. R. Multiple alignment using hidden Markov models. Proc Int Conf Intell Syst Mol Biol 3, 114-120 (1995).
121 Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome Annotation and Curation Using MAKER and MAKER-P. Curr Protoc Bioinformatics 48, 4 11 11-39, doi:10.1002/0471250953.bi0411s48 (2014).
122 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
123 Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770, doi:10.1093/bioinformatics/btr011 (2011).
124 Vilella, A. J. et al. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19, 327-335, doi:10.1101/gr.073585.107 (2009).
125 Ruan, J. et al. TreeFam: 2008 Update. Nucleic Acids Res 36, D735-740, doi:10.1093/nar/gkm1005 (2008).
126 Wallace, I. M., O'Sullivan, O., Higgins, D. G. & Notredame, C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 34, 1692-1699, doi:10.1093/nar/gkl091 (2006).
127 Sankoff, D., Deneault, M., Bryant, D., Lemieux, C. & Turmel, M. in Comparative Genomics. Computational Biology Vol. 1 (eds D. Sankoff & J.H. Nadeau) (Springer, 2000).
128 Sawa, G., Dicks, J. & Roberts, I. N. Current approaches to whole genome phylogenetic analysis. Brief Bioinform 4, 63-74, doi:10.1093/bib/4.1.63 (2003).
129 Felsenstein, J. PHYLIP-Phylogeny Inference Package (Ver. 3.2). Cladistics 5, 164-166 (1989).
130 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359, doi:10.1038/nmeth.1923 (2012).
131 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).
132 Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14, 178-192, doi:10.1093/bib/bbs017 (2013).
133 Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. DeepTools: A flexible platform for exploring deep-sequencing data. Nucleic Acids Research 42, W187-W191, doi:10.1093/nar/gku365 (2014).
134 Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644-652, doi:10.1038/nbt.1883 (2011).
135 Henschel, R. et al. in Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond Article 45 (Association for Computing Machinery, Chicago, Illinois, USA, 2012).
136 Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211-3217, doi:10.1093/bioinformatics/bts611 (2012).
137 Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21 29 21-21 29 29, doi:10.1002/0471142727.mb2129s109 (2015).
138 Fernandez-Minan, A., Bessa, J., Tena, J. J. & Gomez-Skarmeta, J. L. Assay for transposase-accessible chromatin and circularized chromosome conformation capture, two methods to explore the regulatory landscapes of genes in zebrafish. Methods Cell Biol 135, 413-430, doi:10.1016/bs.mcb.2016.02.008 (2016).
139 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9, 1-9, doi:10.1186/gb-2008-9-9-r137 (2008).
140 Gaspar, J. M. Improved peak-calling with MACS2. bioRxiv 496521, doi:10.1101/496521 (2018).
141 Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842, doi:10.1093/bioinformatics/btq033 (2010).
142 Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res 32, W273-279, doi:10.1093/nar/gkh458 (2004).
143 Brudno, M. et al. Glocal alignment: finding rearrangements during alignment. Bioinformatics 19 Suppl 1, i54-62, doi:10.1093/bioinformatics/btg1005 (2003).
144 Lufkin, T. In situ hybridization of whole-mount mouse embryos with RNA probes: preparation of embryos and probes. CSH Protoc 2007, pdb prot4822, doi:10.1101/pdb.prot4822 (2007).
145 Lufkin, T. In situ hybridization of whole-mount mouse embryos with RNA probes: hybridization, washes, and histochemistry. CSH Protoc 2007, pdb prot4823, doi:10.1101/pdb.prot4823 (2007).
146 Negrisolo, E. et al. Different phylogenomic approaches to resolve the evolutionary relationships among model fish species. Mol Biol Evol 27, 2757-2774, doi:10.1093/molbev/msq165 (2010).
147 McConnell, S. C. et al. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci U S A 113, E5014-5023, doi:10.1073/pnas.1607602113 (2016).
148 Traver, D. & Yoder, J. A. in The Zebrafish in Biomedical Research (eds S. Cartner et al.) 191–216 (Academic Press, 2020).
149 Nikaido, M. et al. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res 23, 1740-1748, doi:10.1101/gr.158105.113 (2013).
150 Long, W. L. & Ballard, W. W. Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC developmental biology 1, 6 (2001).