1. Diamanti-Kandarakis E, … JB-E, 2009 undefined (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. academic.oup.com. https://doi.org/10.1210/er.2009-0002
2. Pinson A, Bourguignon J, Andrology AP-, 2016 undefined (2016) Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Wiley Online Libr 4:706–722. https://doi.org/10.1111/andr.12211
3. Chokwe TB, Okonkwo JO, Sibali LL (2017) Distribution, exposure pathways, sources and toxicity of nonylphenol and nonylphenol ethoxylates in the environment. Water SA 43:529–542. https://doi.org/10.4314/wsa.v43i4.01
4. Kim H, Oh S, Gye MC, Shin I (2018) Comparative toxicological evaluation of nonylphenol and nonylphenol polyethoxylates using human keratinocytes. Drug Chem Toxicol 41:486–491. https://doi.org/10.1080/01480545.2017.1391829
5. Monteiro-Riviere NA, Van Miller JP, Simon G, et al (2000) Comparative in vitro percutaneous absorption of nonylphenol and nonylphenol ethoxylates (NPE-4 and NPE-9) through human, porcine and rat skin. Toxicol Ind Health 16:49–57. https://doi.org/10.1177/074823370001600201
6. Sciarrillo R, Di Lorenzo M, Valiante S, et al (2021) OctylPhenol (OP) Alone and in Combination with NonylPhenol (NP) Alters the Structure and the Function of Thyroid Gland of the Lizard Podarcis siculus. Arch Environ Contam Toxicol 80:567–578. https://doi.org/10.1007/s00244-021-00823-5
7. Geens T, Neels H, Covaci A (2012) Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 87:796–802. https://doi.org/10.1016/j.chemosphere.2012.01.002
8. Vivacqua A, Recchia AG, Fasanella G, et al (2003) The Food Contaminants Bisphenol A and 4-Nonylphenol Act as Agonists for Estrogen Receptor α in MCF7 Breast Cancer Cells. Endocrine 22:275–284. https://doi.org/10.1385/ENDO:22:3:275
9. Mao Z, Zheng YL, Zhang YQ (2011) Behavioral impairment and oxidative damage induced by chronic application of nonylphenol. Int J Mol Sci 12:114–127. https://doi.org/10.3390/ijms12010114
10. Jie X, Li JM, Zheng F, et al (2013) Neurotoxic effects of nonylphenol: A review. Wien Klin Wochenschr 125:61–70. https://doi.org/10.1007/s00508-012-0221-2
11. Arukwe A, Thibaut R émi, Ingebrigtsen K, et al (2000) In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquat Toxicol 49:289–304. https://doi.org/10.1016/S0166-445X(99)00084-3
12. Gu W, Wang Y, Qiu Z, et al (2018) Maternal exposure to nonylphenol during pregnancy and lactation induces microglial cell activation and pro-inflammatory cytokine production in offspring hippocampus. Sci Total Environ 634:525–533. https://doi.org/10.1016/j.scitotenv.2018.03.329
13. Korkmaz A, Ahbab MA, Kolankaya D, Barlas N (2010) Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem Toxicol 48:2865–2871. https://doi.org/10.1016/j.fct.2010.07.019
14. Eid Z, Mahmoud UM, Mekkawy IAA, et al (2021) 4-Nonylphenol induced brain damage in juvenile African catfish (Clarias garepinus). Toxicol Environ Health Sci 13:201–214. https://doi.org/10.1007/s13530-021-00080-y
15. Tabassum H, Ashafaq M, Parvez S, Raisuddin S (2017) Role of melatonin in mitigating nonylphenol-induced toxicity in frontal cortex and hippocampus of rat brain. Neurochem Int 104:11–26. https://doi.org/10.1016/j.neuint.2016.12.010
16. Asifa KP, Chitra KC (2016) Impact of Nonylphenol on Antioxidant System and Acetylcholinesterase Activity in the Brain of Etroplus Maculatus (Bloch, 1795). Int J Res Available
17. Qiu Z, Wang Y, Chen J (2019) Perinatal exposure to nonylphenol induces microglia-mediated nitric oxide and prostaglandin E2 production in offspring hippocampus. Toxicol Lett 301:114–124. https://doi.org/10.1016/j.toxlet.2018.11.013
18. Rehman MU, Wali AF, Ahmad A, et al (2018) Neuroprotective Strategies for Neurological Disorders by Natural Products: An update. Curr Neuropharmacol 17:247–267. https://doi.org/10.2174/1570159x16666180911124605
19. Ahmad MF, Ahmad FA, Ashraf SA, et al (2021) An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 25:. https://doi.org/10.1016/j.hermed.2020.100404
20. El Gazzar M, El Mezayen R, Marecki JC, et al (2006) Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol 6:1135–1142. https://doi.org/10.1016/j.intimp.2006.02.004
21. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S (2015) Thymoquinone and its therapeutic potentials. Pharmacol Res 95–96:138–158. https://doi.org/10.1016/j.phrs.2015.03.011
22. Cobourne-Duval MK, Taka E, Mendonca P, et al (2016) The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells. Neurochem Res 41:3227–3238. https://doi.org/10.1007/s11064-016-2047-1
23. Ullah I, Ullah N, Naseer MI, et al (2012) Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neurosci 13:. https://doi.org/10.1186/1471-2202-13-11
24. Alemi M, Sabouni F, Sanjarian F, et al (2013) Anti-inflammatory effect of seeds and Callus of Nigella sativa L. extracts on mix glial cells with regard to their thymoquinone content. AAPS PharmSciTech 14:160–167. https://doi.org/10.1208/s12249-012-9899-8
25. Poorgholam P, Yaghmaei P, Hajebrahimi Z Thymoquinone recovers learning function in a rat model of Alzheimer’s disease. Avicenna J phytomedicine 8:188–197. https://doi.org/10.22038/ajp.2018.21828.1820
26. Bargi R, Asgharzadeh F, Beheshti F, et al The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Elsevier
27. Ebrahimi SS, Oryan S, Izadpanah E, Hassanzadeh K (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114. https://doi.org/10.1016/j.toxlet.2017.05.018
28. Zarei-Kheirabadi M, Mirsadeghi S, Vaccaro AR, et al (2020) Protocol for purification and culture of astrocytes: useful not only in 2 days postnatal but also in adult rat brain. Mol Biol Rep 47:1783–1794. https://doi.org/10.1007/s11033-020-05272-2
29. Malich G, Markovic B, Toxicology CW-, 1997 undefined The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Elsevier
30. Hosseinzadeh H, Parvardeh S, Asl MN, et al (2007) Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine 14:621–627. https://doi.org/10.1016/j.phymed.2006.12.005
31. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90. https://doi.org/10.1016/S0165-0173(01)00067-4
32. Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci 19:10193–10200. https://doi.org/10.1523/jneurosci.19-23-10193.1999
33. Donato R, Sorci G, Riuzzi F, et al (2009) S100B’s double life: Intracellular regulator and extracellular signal. Biochim Biophys Acta - Mol Cell Res 1793:1008–1022. https://doi.org/10.1016/j.bbamcr.2008.11.009
34. Kazemi S, Khalili-Fomeshi M, Akbari A, et al (2018) The correlation between nonylphenol concentration in brain regions and resulting behavioral impairments. Brain Res Bull 139:190–196. https://doi.org/10.1016/j.brainresbull.2018.03.003
35. Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939. https://doi.org/10.1523/JNEUROSCI.5480-05.2006
36. Cheng F, Vivacqua G, Yu S (2011) The role of alpha-synuclein in neurotransmission and synaptic plasticity. J Chem Neuroanat 42:242–248. https://doi.org/10.1016/j.jchemneu.2010.12.001
37. Desplats P, Spencer B, Crews L, et al (2012) α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of notch. J Biol Chem 287:31691–31702. https://doi.org/10.1074/jbc.M112.354522
38. Doucet J, Tague B, Arnold DL, et al (2009) Persistent organic pollutant residues in human fetal liver and placenta from greater Montreal, Quebec: A longitudinal study from 1998 through 2006. Environ Health Perspect 117:605–610. https://doi.org/10.1289/ehp.0800205
39. Tiwari SK, Agarwal S, Chauhan LKS, et al (2015) Bisphenol-A Impairs Myelination Potential During Development in the Hippocampus of the Rat Brain. Mol Neurobiol 51:1395–1416. https://doi.org/10.1007/s12035-014-8817-3
40. Li S, You M, Chai W, et al (2019) Developmental exposure to nonylphenol induced rat axonal injury in vivo and in vitro. Arch Toxicol 93:2673–2687. https://doi.org/10.1007/s00204-019-02536-0
41. Jie X, Yang W, Jie Y, et al (2010) Toxic effect of gestational exposure to nonylphenol on F1 male rats. Birth Defects Res Part B - Dev Reprod Toxicol 89:418–428. https://doi.org/10.1002/bdrb.20268
42. Li M, You M, Li S, et al (2019) Effects of maternal exposure to nonylphenol on learning and memory in offspring involve inhibition of BDNF-PI3K/Akt signaling. Brain Res Bull 146:270–278. https://doi.org/10.1016/j.brainresbull.2019.01.014
43. Kim SK, Kim BK, Shim JH, et al (2006) Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol Sci 94:310–321. https://doi.org/10.1093/toxsci/kfl114
44. Kudo C, Wada K, Masuda T, et al (2004) Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle. J Neurochem 88:1416–1423. https://doi.org/10.1046/j.1471-4159.2003.02270.x
45. Radad K, Al-Shraim M, … MM-N, 2015 undefined (2013) Neuroprotective role of thymoquinone against 1-methyl-4-phenylpyridinium-induced dopaminergic cell death in primary mesencephalic cell culture. nsj.org.sa
46. Ismail N, Ismail M, Mazlan M, et al (2013) Thymoquinone prevents β-amyloid neurotoxicity in primary cultured cerebellar granule neurons. Cell Mol Neurobiol 33:1159–1169. https://doi.org/10.1007/s10571-013-9982-z
47. Korkmaz A, Ahbab MA, Kolankaya D, Barlas N (2010) Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem Toxicol 48:2865–2871. https://doi.org/10.1016/j.fct.2010.07.019
48. Mao Z, Zheng Y, Zhang Y, et al (2008) Chronic application of nonylphenol-induced apoptosis via suppression of bcl-2 transcription and up-regulation of active caspase-3 in mouse brain. Neurosci Lett 439:147–152. https://doi.org/10.1016/j.neulet.2008.05.006
49. Staniek K, Gille L (2010) Is thymoquinone an antioxidant? BMC Pharmacol 10:. https://doi.org/10.1186/1471-2210-10-s1-a9
50. Woo CC, Kumar AP, Sethi G, Tan KHB (2012) Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83:443–451. https://doi.org/10.1016/j.bcp.2011.09.029
51. Isaev NK, Chetverikov NS, Stelmashook E V., et al (2020) Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. Biochem 85:167–176. https://doi.org/10.1134/S0006297920020042
52. Abulfadl YS, El-Maraghy NN, Ahmed AAE, et al (2018) Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes. Neurol Res 40:324–333. https://doi.org/10.1080/01616412.2018.1441776
53. Radad K, Moldzio R, Taha M, Rausch WD (2009) Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phyther Res 23:696–700. https://doi.org/10.1002/ptr.2708
54. Abulfadl YS, El-Maraghy NN, Ahmed AAE, et al (2018) Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum Exp Toxicol 37:1092–1104. https://doi.org/10.1177/0960327118755256
55. Federico A, Cardaioli E, Da Pozzo P, et al (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262. https://doi.org/10.1016/j.jns.2012.05.030
56. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:. https://doi.org/10.1155/2014/360438
57. Lotfi M, Hasanpour AH, Moghadamnia AA, Kazemi S (2020) The Investigation into Neurotoxicity Mechanisms of Nonylphenol: A Narrative Review. Curr Neuropharmacol 19:1345–1353. https://doi.org/10.2174/1570159x18666201119160347
58. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245. https://doi.org/10.1046/j.1525-1373.1999.d01-140.x
59. Bjørklund G, Meguid NA, El-Bana MA, et al (2020) Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 57:2314–2332. https://doi.org/10.1007/s12035-019-01742-2
60. Ye J, Zhai HZ (2005) Oxidative stress and Alzheimer disease. Chinese J Clin Rehabil 9:117–119
61. Banerjee S, Padhye S, Azmi A, et al (2010) Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 62:938–946. https://doi.org/10.1080/01635581.2010.509832
62. Kassab R, Applied RE-H-EJ of B and, 2017 undefined The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Elsevier
63. Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H (2020) Role of Oxidative Stress, MAPKinase and Apoptosis Pathways in the Protective Effects of Thymoquinone Against Acrylamide-Induced Central Nervous System Toxicity in Rat. Neurochem Res 45:254–267. https://doi.org/10.1007/s11064-019-02908-z
64. Li S, Jiang Z, Chai W, et al (2019) Autophagy activation alleviates nonylphenol-induced apoptosis in cultured cortical neurons. Neurochem Int 122:73–84. https://doi.org/10.1016/j.neuint.2018.11.009
65. Beker M, Dallı T, Elibol B (2018) Thymoquinone Can Improve Neuronal Survival and Promote Neurogenesis in Rat Hippocampal Neurons. Mol Nutr Food Res 62:. https://doi.org/10.1002/mnfr.201700768
66. Kanter M (2008) Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res 33:579–588. https://doi.org/10.1007/s11064-007-9481-z
67. Escartin C, Galea E, Lakatos A, et al Reactive astrocyte nomenclature, definitions, and future directions | Enhanced Reader. nature.com
68. Hausmann R, Rieß R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113:70–75. https://doi.org/10.1007/PL00007711
69. Jie Y, Xuefeng Y, Mengxue Y, et al (2016) Mechanism of nonylphenol-induced neurotoxicity in F1 rats during sexual maturity. Wien Klin Wochenschr 128:426–434. https://doi.org/10.1007/s00508-016-0960-6
70. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815. https://doi.org/10.1523/jneurosci.08-08-02804.1988
71. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of α-Synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449. https://doi.org/10.1074/jbc.273.16.9443
72. Saleh H, Saleh A, Yao H, et al (2015) Mini review: Linkage between α-Synuclein protein and cognition. Transl Neurodegener 4:1–6. https://doi.org/10.1186/s40035-015-0026-0
73. Alhebshi AH, Odawara A, Gotoh M, Suzuki I (2014) Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against α-synuclein-induced synapse damage. Neurosci Lett 570:126–131. https://doi.org/10.1016/j.neulet.2013.09.049
74. Gómez-Benito M, Granado N, García-Sanz P, et al (2020) Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 11:356