Cells and reagents
The 293T, 293A and TZM-bl cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Mediatech Inc., Corning, Manassas, VA, USA). Mab 4E9C (45, 46) and CD4mc YIR-821 (42) have previously been reported. Soluble CD4 was purchased commercially (sCD4, R&D systems, Inc., Minneapolis, MN, USA). Heavy and light chain gene-expressing plasmids of VRC01 (55), Env clones from a global panel (38), subtype B (56), A (56), C (57) and CRF02_AG (58) were obtained through the NIH AIDS Reagent Program.
Isolation of IgG-producing single B cells by fluorescence activated cell sorting
A blood sample was obtained from patient KMCB2 of Kyushu Medical Center, who was infected with the CRF02_AG subtype of HIV-1. B cells were transformed by EBV and cultured at a concentration of 103 cells/well for 10 days, as previously reported (45). Single cells were sorted from the wells of an EBV-transformed B cell culture that scored positive for binding to Env (HIV-1 93TH966.8)-expressing cells using FACSAria II (BD Biosciences, San Jose, CA, USA). The cells were stained with anti-human IgG-BV421 and anti-human IgM-APC/Cy7 (BioLegend, San Diego, CA, USA), and IgG+IgM˗ cells were sorted at single cell density into 4 μl/well of ice-cold 0.5× phosphate-buffered saline (PBS) containing 10 mM DTT, 8 U RNAsin® (Promega, WI, USA), 0.4 U 5′-3′ Prime RNAse Inhibitor™ (Eppendorf) as previously described (59).
Cloning and analysis of 1E5 immunoglobulin variable genes
cDNA was synthesized as previously described (59) in a total volume of 14 μl/well in a 96-well sorting plate. Total RNA from single cells was reverse transcribed in nuclease-free water (Eppendorf) using 150 ng random hexamer primer (pd(N) 6, GE Healthcare, Buckinghamshire, UK), 0.5 μl (10 mM) of each nucleotide dNTP-Mix (Invitrogen, Carlsbad CA, USA), 1 μl (0.1 M) of DTT (Invitrogen), 0.5% v/v Igepal CA-630 (Sigma), 4 U RNAsin® (Promega), 6 U Prime RNAse Inhibitor™ (Eppendorf) and 50 U Superscript® III reverse transcriptase (Thermo Fisher Scientific, MA USA). The reverse transcription (RT) was performed as follows: 42 °C for 10 min, 25 °C for 10 min, 50 °C for 60 min and 94 °C for 5 min.
For cloning of 1E5 immunoglobulin variable genes, the first round of nested PCR was performed according to the methods described by Tiller et al. (59) using the same primer pairs, while second-round primers were modified to have a 15 base overlap at the 5ʹ end with the specific vectors. The second PCR primer sequences are listed in Additional file 10: Table S1.
The IgG heavy and light chain expression plasmids were constructed by recombination of the designated second PCR product with pIgGH and pKVA2, respectively (45), using the GeneArt Seamless Cloning and Assembly kit (Invitrogen). The nucleotide sequences of the immunoglobulin variable regions were aligned and compared to avoid possible PCR error. The sequences were analyzed for germline gene verification, framework and CDR mapping, quantification of percent identity to germline, CDR amino acid length and pI using IMGT vquest (http://imgt.org/IMGT_vquest/vquest). CDRH2 grand average of hydropathy (GRAVY) scores were calculated using an online tool (http://www.gravy-calculator.de/).
Construction of IgG3 heavy chain-expressing plasmid
The region from CH1 to CH3 of IgG1 heavy chain-expressing vector pIgGH was exchanged with the corresponding region of IgG3, and IgG3 heavy chain-expressing vector pIgG3H was constructed. Briefly, the CH1-CH3 region of IgG3 was amplified using primers, CHApa-F (AGC CTC CAC CAA GGG CCC ATC GG), IgG3-R (TCA CCA AGT GGG GTT TTG AGC TCA), CHPme-R (CTG ATC AGC GGG TTT AAA CTA TCA TTT ACC CGG AGA CAG GG) and IgG3-F (ACA AGA GAG TTG AGC TCA AAA CCC C) from cDNA, which was synthesized from the RNA of healthy donor peripheral blood mononuclear cells. The CH1-CH3 region of pIgGH was excluded by digestion with ApaI and PmeI, and the IgG3 fragments were inserted into the vector using the GeneArt Seamless Cloning and Assembly kit (Invitrogen). The variable region of 1E5 was inserted into pIgG3H to obtain 1E5-IgG3.
Production and purification of recombinant IgG
Recombinant IgG was produced and purified as previously described (45). Briefly, heavy and light chain plasmids were transfected into 293A cells using TransIT®-LT1 Transfection Reagent (Mirus Bio LLC, WI, USA), and the cells stably expressing IgG were selected with G418 (1000 μg/ml) and hygromycin (150 μg/ml). IgG1 and IgG3 proteins were purified using a HiTrap™ rProtein A FF Column and a HiTrap™ Protein G HP column, respectively (GE Healthcare).
Analysis of the binding activity of antibodies by flow cytometry
The binding activity of antibodies was analyzed as previously described (60). Briefly, 293T cells were transfected with a plasmid expressing both HIV-1 Env and enhanced green fluorescent protein (EGFP). After 48 h of transfection, the cells were stained with primary antibody for 15 min at room temperature (RT). The cells were washed twice with PBS containing 0.2% BSA, and incubated with allophycocyanin-conjugated AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG (H + L) (Jackson ImmunoResearch, West Grove, PA, USA) for 15 min at RT. Cells were fixed with PBS containing 10 % formalin and analyzed using the FACSCanto II (BD Biosciences, San Jose, CA, USA). The reactivity of the antibodies was analyzed after gating the EGFP+ cells using FlowJo (TreeStar, San Carlos, CA, USA).
Neutralization assay using pseudovirus
The neutralization activity of antibodies was determined as previously described (45, 61). In brief, 293T cells were transfected with pSG3ΔEnv and Env expression vector, and the supernatant after 48 h of transfection was stored at ˗80 °C. The median tissue culture infectious dose (TCID50) of each pseudovirus was determined using TZM-bl cells. Serially diluted antibody and virus (400 TCID50) were incubated for 1 h, and TZM-bl cells were added. After incubation for 48 h, the galactosidase activity was measured using galactosidase substrate (Tropix Gal-Screen substrate, Applied Biosystems) and an EnSpire Multimode Plate Reader (PerkinElmer, MA, USA). The relative light units (RLU) were compared to calculate the reduction in infectivity and 50% of the maximal inhibitory concentration (IC50) was calculated using nonlinear regression.
ADCC bioassay to detect FcgRIIIa-mediated signaling
The detection of FcgRIIIa-mediated signaling was performed using a Jurkat NFAT-luc FCgRIIIa cell line (BPS Bioscience, CA, USA), as described previously (62). The target cells were 293T cells expressing Env, which were transfected with Env-expressing plasmid 48 h before the ADCC assay. The target cells were washed with PBS, treated with 0.05% trypsin, and resuspended in RPMI-1640 (Thermo Fisher Scientific) with 4% FBS at a concentration of 3 ´ 106 cells/ml. Then, 25 µl of the target cells were incubated with antibodies for 15 min, after which 25 µl of effector Jurkat cells were added at a ratio of 1:1 and were co-cultured for 6 h. The cells were lysed and the firefly luciferase activity was determined with a luciferase assay kit (Promega) and EnSpire® Multimode Plate Reader. The co-culture in the absence of antibody provided background (antibody-independent) luciferase activity. The RLU obtained in the presence of antibody were divided by the background level to calculate the fold change.