We study the time dynamics of random density matrices generated by evolving the same pure state using a Gaussian orthogonal ensemble (GOE) of Hamiltonians. We show that the spectral statistics of the resulting mixed state is well described by random matrix theory (RMT) and undergoes a crossover from the Gaussian orthogonal ensemble to the Gaussian unitary ensemble (GUE) for short and large times, respectively. Using a semi-analytical treatment relying on a power series of the density matrix as a function of time, we find that the crossover occurs in a characteristic time that scales as the inverse of the dimension. The RMT results are contrasted with a paradigmatic model of many-body localization in the chaotic regime, where the GUE statistics is reached at large times, while for short times the statistics strongly depends on the peculiarity of the considered subspace.