[1] MPEDA.Region-wise Processing Plants. http://e-mpeda.nic.in/registration/Rpt_Region_wise_Plants_With_Capacity.aspx. 2021. Accessed 17 September 2021.
[2] Sachindra, N.M. and Bhaskar, N.: In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2008.04.036
[3] Liang, S., Sun, Y. and Dai, X.: A review of the preparation, analysis and biological functions of chitooligosaccharide. Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19082197
[4] Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K. and Nasri, M.: Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol. (2014). https://doi.org/10.1016/j.ijfoodmicro.2014.04.029
[5] Wang, S.L., Lin, H.T., Liang, T.W., Chen, Y.J., Yen, Y.H. and Guo, S.P.: Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.08.035
[6] Park, J.K., Chung, M.J., Choi, H.N. and Park, Y.I.: Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. Mol. Sci. (2011). https://doi.org/10.3390/ijms12010266
[7] Yousef, M., Pichyangkura, R., Soodvilai, S., Chatsudthipong, V. and Muanprasat, C.: Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: therapeutic efficacy and possible mechanisms of action. Pharmacological Research (2012). https://doi.org/10.1016/j.phrs.2012.03.013
[8] Fernandes, J.C., Spindola, H., De Sousa, V., Santos-Silva, A., Pintado, M.E., Malcata, F.X. and Carvalho, J.E.: Anti-inflammatory activity of chitooligosaccharides in vivo. Marine drugs (2010). https://doi.org/10.3390/md8061763
[9] Pantaleone, D., Yalpani, M. and Scollar, M.: Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr. Res. (1992). https://doi.org/10.1016/S0008-6215(92)84256-R
[10] Roncal, T., Oviedo, A., de Armentia, I.L., Fernández, L. and Villarán, M.C.: High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydrate Research (2007). https://doi.org/10.1016/j.carres.2007.08.023
[11] Kumar, A.V., Varadaraj, M.C., Lalitha, R.G. and Tharanathan, R.N.: Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochim Biophys Acta Gen Subj. (2004a). https://doi.org/10.1016/j.bbagen.2003.11.004
[12] Lin, H., Wang, H., Xue, C. and Ye, M.: Preparation of chitosan oligomers by immobilized papain. Enzyme Microb. Technol. (2002). https://doi.org/10.1016/S0141-0229(02)00138-2
[13] Kittur, F.S., Kumar, A.V., Gowda, L.R. and Tharanathan, R.N.: Chitosanolysis by a pectinase isozyme of Aspergillus niger—A non-specific activity. Carbohydr. Polym. (2003). https://doi.org/10.1016/S0144-8617(03)00042-0
[14] Qin, C., Du, Y., Zong, L., Zeng, F., Liu, Y. and Zhou, B.: Effect of hemicellulase on the molecular weight and structure of chitosan. Polym. Degrad. Stab. (2003). https://doi.org/10.1016/S0141-3910(03)00027-2
[15] Wu, S.: Preparation of water-soluble chitosan by hydrolysis with commercial α-amylase containing chitosanase activity. Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2011.03.111
[16] Pan, S. and Wu, S., 2011. Preparation of water-soluble chitosan by hydrolysis with commercial glucoamylase containing chitosanase activity. Eur. Food Res. Technol. (2011). https://doi.org/10.1007/s00217-011-1524-7
[17] Rokhati, N., Widjajanti, P., Pramudono, B. and Susanto, H.: Performance comparison of α-and β-amylases on chitosan hydrolysis. Inter. Sch. Res. Notices. (2013). https://doi.org/10.1155/2013/186159
[18] Benhabiles, M.S., Salah, R., Lounici, H., Drouiche, N., Goosen, M.F.A. and Mameri, N.: Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. (2012). https://doi.org/10.1016/j.foodhyd.2012.02.013
[19] Renuka, V., Ravishankar, C.N., Elavarasan, K., Zynudheen, A.A. and Joseph, T.C.: Production and Characterization of Chitosan from Shrimp Shell Waste of Parapeneopsis stylifera. (2019). https://doi.org/10.20546/ijcmas.2019.811.240
[20] Laokuldilok, T., Potivas, T., Kanha, N., Surawang, S., Seesuriyachan, P., Wangtueai, S., Phimolsiripol, Y. and Regenstein, J.M.: Physicochemical, antioxidant, and antimicrobial properties of chitooligosaccharides produced using three different enzyme treatments. Food Biosci. (2017). https://doi.org/10.1016/j.fbio.2017.03.004
[21] Moore, G.K., GK, M. and GAF, R.: Determination of the degree of N-acetylation of chitosan. 1980.
[22] Roberts, G.A. and Domszy, J.G.: Determination of the viscometric constants for chitosan. Int. J. Biol. Macromol. (1982). https://doi.org/10.1016/0141-8130(82)90074-5
[23] Cabrera, J.C. and Van Cutsem, P.: Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem. Eng. J. (2005). https://doi.org/10.1016/j.bej.2005.04.025
[24] Lin, S.B., Lin, Y.C. and Chen, H.H.: Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: Characterisation and antibacterial activity. Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2009.02.002
[25] Yen, M.T., Yang, J.H. and Mau, J.L.: Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. (2008). https://doi.org/10.1016/j.carbpol.2008.06.006
[26] Oyaizu, M.: Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics (1986). https://doi.org/10.5264/eiyogakuzashi.44.307
[27] Ahing, F.A. and Wid, N.: Extraction and characterization of chitosan from shrimp shell waste in Sabah. Trans. innov. sci. technol. (2016).
[28] Fernandez-Kim, S. O.: Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols. (2004).
[29] Tao, H., Wei, W., Mao, Y., Zhang, S. and Xia, J.: Study on degradation characteristics of chitosan by pepsin with piezoelectric quartz crystal impedance analysis technique. Anal Sci. (2005). https://doi.org/10.2116/analsci.21.1057
[30] Kumar, A.B.V., Gowda, L.R. and Tharanathan, R.N.: Non‐specific depolymerization of chitosan by pronase and characterization of the resultant products. Eur. j. biochem. (2004b). https://doi.org/10.1111/j.1432-1033.2003.03975.x
[31] Vishu Kumar, B.A., Varadaraj, M.C. and Tharanathan, R.N.: Low Molecular Weight Chitosan Preparation with the Aid of Pepsin, Characterization, and Its Bactericidal Activity. Biomacromolecules. (2007). https://doi.org/10.1021/bm060753z
[32] Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J. and Stepnowski, P.: Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine drugs. (2010). https://doi.org/10.3390/md8051567
[33] Park, B.K. and Kim, M.M.: Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. (2010). https://doi.org/10.3390/ijms11125152
[34] Aranaz, I., Mengíbar, M., Harris, R., Miralles, B., Acosta, N., Calderón, L., Sánchez, Á. and Heras, Á.: Role of physicochemical properties of chitin and chitosan on their functionality. Curr. Chem. Biol. 8 (1), 27-42 (2014).
[35] Hargono, H., & Djaeni, M.: Utilization of chitosan prepared from shrimp shell as fat diluent. Journal of Coastal Development, 7(1), 31-37 (2003).
[36] Kim, S.K. and Rajapakse, N.: Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. (2005). https://doi.org/10.1016/j.carbpol.2005.08.012
[37] Lodhi, G., Kim, Y.S., Hwang, J.W., Kim, S.K., Jeon, Y.J., Je, J.Y., Ahn, C.B., Moon, S.H., Jeon, B.T. and Park, P.J.: Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res. Int. (2014). https://doi.org/10.1155/2014/654913
[38] Jeon, Y.J., Shahidi, F. and Kim, S.K.: Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. (2000). https://doi.org/10.1081/FRI-100100286
[39] Dong, H., Wang, Y., Zhao, L., Zhou, J., Xia, Q. and Qiu, Y.: Key technologies of enzymatic preparation for DP 6–8 chitooligosaccharides. J. Food Process Eng. (2015). https://doi.org/10.1111/jfpe.12159
[40] Kapadnis, G., Dey, A., Dandekar, P. and Jain, R.: Effect of degree of deacetylation on solubility of low‐molecular‐weight chitosan produced via enzymatic breakdown of chitosan. Polym. Int. (2019). https://doi.org/10.1002/pi.5795
[41] Tomida, H., Fujii, T., Furutani, N., Michihara, A., Yasufuku, T., Akasaki, K., Maruyama, T., Otagiri, M., Gebicki, J.M. and Anraku, M.: Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res. (2009). https://doi.org/10.1016/j.carres.2009.05.006
[42] Kumar, A.V. and Tharanathan, R.N.: A comparative study on depolymerization of chitosan by proteolytic enzymes. Carbohydr. Polym. (2004c). https://doi.org/10.1016/j.carbpol.2004.07.001
[43] Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles-Monal, W., Desbrieres, J. and Rinaudo, M.: An infrared investigation in relation with chitin and chitosan characterization. Polymer. (2001). https://doi.org/10.1016/S0032-3861(00)00713-8.
[44] Prashanth, K.H., Kittur, F.S. and Tharanathan, R.N.: Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr. Polym. (2002). https://doi.org/10.1016/S0144-8617(01)00371-X
[45] Plazek, D.J. and Ngai, K.L.: The glass temperature. In: J.E. Mark (Ed.), Physical properties of polymers handbook. pp.139-159. (2007). 10.1007/978-0-387-69002-5_12.
[46] Reutner, P., Luft, B. and Borchard, W.: Compound formation and glassy solidification in the system gelatin-water. Colloid Polym. Sci. (1985). https://doi.org/10.1007/BF01421885
[47] de Assis, C.F., Costa, L.S., Melo-Silveira, R.F., Oliveira, R.M., Pagnoncelli, M.G.B., Rocha, H.A.O., de Macedo, G.R. and Dos Santos, E.S.: Chitooligosaccharides antagonize the cytotoxic effect of glucosamine. World J. Microbiol. Biotechnol. (2012). https://doi.org/10.1007/s11274-011-0910-4
[48] Li, K., Xing, R., Liu, S., Qin, Y., Li, B., Wang, X. and Li, P.: Separation and scavenging superoxide radical activity of chitooligomers with degree of polymerization 6–16. Int. J. Biol. Macromol. (2012). https://doi.org/10.1016/j.ijbiomac.2012.07.031
[49] Park, P.J., Je, J.Y. and Kim, S.K.: Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J. Agric. Food Chem., (2003). https://doi.org/10.1021/jf034039+
[50] Yen, M.T., Yang, J.H. and Mau, J.L.: Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr. Polym. (2009). https://doi.org/10.1016/j.carbpol.2008.06.006
[51] Brand-Williams, W., Cuvelier, M.E. and Berset, C.L.W.T.: Use of a free radical method to evaluate antioxidant activity. LWT (1995). https://doi.org/10.1016/S0023-6438(95)80008-5
[52] Prior, R.L., Wu, X. and Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. (2005). https://doi.org/10.1021/jf0502698
[53] Ngo, D.N., Kim, M.M. and Kim, S.K.: Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr. Polym. 2008. https://doi.org/10.1016/j.carbpol.2008.02.005
[54] Yuan, W.P., Liu, B., Liu, C.H., Wang, X.J., Zhang, M.S., Meng, X.M. and Xia, X.K.: Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World J. Gastroenterol. (2009). 10.3748/wjg.15.1339
[55] Je, J.Y., Park, P.J. and Kim, S.K.: Radical scavenging activity of hetero-chitooligosaccharides. Eur. Food Res. Technol. (2004). https://doi.org/10.1007/s00217-004-0881-x
[56] Dorman, H.D., Koşar, M., Kahlos, K., Holm, Y. and Hiltunen, R.: Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. (2003). https://doi.org/10.1021/jf034108k