1 Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, doi:10.3322/caac.21660 (2021).
2 Goldstraw, P. et al. Non-small-cell lung cancer. Lancet (London, England) 378, 1727-1740, doi:10.1016/s0140-6736(10)62101-0 (2011).
3 Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet (London, England) 393, 1819-1830, doi:10.1016/s0140-6736(18)32409-7 (2019).
4 Forde, P. M. et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. The New England journal of medicine 378, 1976-1986, doi:10.1056/NEJMoa1716078 (2018).
5 Travis, W. D. et al. IASLC Multidisciplinary Recommendations for Pathologic Assessment of Lung Cancer Resection Specimens After Neoadjuvant Therapy. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 15, 709-740, doi:10.1016/j.jtho.2020.01.005 (2020).
6 Jia, X. H. et al. Efficacy and safety of neoadjuvant immunotherapy in resectable nonsmall cell lung cancer: A meta-analysis. Lung Cancer 147, 143-153, doi:10.1016/j.lungcan.2020.07.001 (2020).
7 Altorki, N. K. et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nature reviews. Cancer 19, 9-31, doi:10.1038/s41568-018-0081-9 (2019).
8 Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature medicine 24, 541-550, doi:10.1038/s41591-018-0014-x (2018).
9 Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature medicine 25, 1251-1259, doi:10.1038/s41591-019-0522-3 (2019).
10 Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274-278, doi:10.1038/s41586-020-2056-8 (2020).
11 Sade-Feldman, M. et al. Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell 175, 998-1013.e1020, doi:10.1016/j.cell.2018.10.038 (2018).
12 Gide, T. N. et al. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer cell 35, 238-255.e236, doi:10.1016/j.ccell.2019.01.003 (2019).
13 Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549-555, doi:10.1038/s41586-019-1922-8 (2020).
14 Goswami, S. et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nature medicine 26, 39-46, doi:10.1038/s41591-019-0694-x (2020).
15 Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126-132, doi:10.1038/s41586-021-03752-4 (2021).
16 Gaudreau, P. O. et al. Neoadjuvant Chemotherapy Increases Cytotoxic T Cell, Tissue Resident Memory T Cell, and B Cell Infiltration in Resectable NSCLC. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 16, 127-139, doi:10.1016/j.jtho.2020.09.027 (2021).
17 DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nature reviews. Immunology 19, 369-382, doi:10.1038/s41577-019-0127-6 (2019).
18 Teijeira, Á. et al. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 52, 856-871.e858, doi:10.1016/j.immuni.2020.03.001 (2020).
19 Reddy, S. M. et al. Poor Response to Neoadjuvant Chemotherapy Correlates with Mast Cell Infiltration in Inflammatory Breast Cancer. Cancer immunology research 7, 1025-1035, doi:10.1158/2326-6066.Cir-18-0619 (2019).
20 Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nature biotechnology, doi:10.1038/s41587-020-00795-2 (2021).
21 Xing, X. et al. Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. Science advances 7, doi:10.1126/sciadv.abd9738 (2021).
22 Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science (New York, N.Y.) 359, 1118-1123, doi:10.1126/science.aam6603 (2018).
23 Shu, C. A. et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. The Lancet. Oncology 21, 786-795, doi:10.1016/s1470-2045(20)30140-6 (2020).
24 Provencio, M. et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. The Lancet. Oncology 21, 1413-1422, doi:10.1016/s1470-2045(20)30453-8 (2020).
25 Liang, W. et al. Expert consensus on neoadjuvant immunotherapy for non-small cell lung cancer. Translational lung cancer research 9, 2696-2715, doi:10.21037/tlcr-2020-63 (2020).
26 Zhao, S. J. et al. SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex. Oncogene 37, 1049-1061, doi:10.1038/onc.2017.403 (2018).
27 Cózar, B. et al. Tumor-Infiltrating Natural Killer Cells. Cancer discovery, doi:10.1158/2159-8290.Cd-20-0655 (2020).
28 Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science (New York, N.Y.) 350, 985-990, doi:10.1126/science.aac9407 (2015).
29 Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 25, 2392-2402, doi:10.1158/1078-0432.Ccr-18-3200 (2019).
30 Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696-701, doi:10.1038/s41586-019-1671-8 (2019).
31 Johnson, D. B. et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nature communications 7, 10582, doi:10.1038/ncomms10582 (2016).
32 Jiang, L. et al. Direct Tumor Killing and Immunotherapy through Anti-SerpinB9 Therapy. Cell 183, 1219-1233.e1218, doi:10.1016/j.cell.2020.10.045 (2020).
33 van Weverwijk, A. et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nature communications 10, 2698, doi:10.1038/s41467-019-10592-4 (2019).
34 Cheng, B. Y. et al. IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. Cancer research 78, 2332-2342, doi:10.1158/0008-5472.Can-17-2445 (2018).
35 Wu, X. et al. AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. The Journal of experimental medicine 214, 1065-1079, doi:10.1084/jem.20160903 (2017).
36 Jin, Y. et al. Human cytosolic hydroxysteroid dehydrogenases of the aldo-ketoreductase superfamily catalyze reduction of conjugated steroids: implications for phase I and phase II steroid hormone metabolism. The Journal of biological chemistry 284, 10013-10022, doi:10.1074/jbc.M809465200 (2009).
37 Velez, M. A., Burns, T. F. & Stabile, L. P. The estrogen pathway as a modulator of response to immunotherapy. Immunotherapy 11, 1161-1176, doi:10.2217/imt-2019-0024 (2019).
38 Svensson, S. et al. CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 21, 3794-3805, doi:10.1158/1078-0432.Ccr-15-0204 (2015).
39 Svoronos, N. et al. Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer discovery 7, 72-85, doi:10.1158/2159-8290.Cd-16-0502 (2017).
40 Polanczyk, M. J. et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. Journal of immunology (Baltimore, Md. : 1950) 173, 2227-2230, doi:10.4049/jimmunol.173.4.2227 (2004).
41 Siegfried, J. M., Gubish, C. T., Rothstein, M. E., Henry, C. & Stabile, L. P. Combining the multitargeted tyrosine kinase inhibitor vandetanib with the antiestrogen fulvestrant enhances its antitumor effect in non-small cell lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 7, 485-495, doi:10.1097/JTO.0b013e31824177ea (2012).
42 Qiao, M. et al. Immune checkpoint inhibitors in EGFR-mutated non-small cell lung cancer: Dusk or Dawn? Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, doi:10.1016/j.jtho.2021.04.003 (2021).
43 Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature reviews. Clinical oncology 15, 325-340, doi:10.1038/nrclinonc.2018.29 (2018).
44 Shi, Y. E. et al. Synuclein gamma stimulates membrane-initiated estrogen signaling by chaperoning estrogen receptor (ER)-alpha36, a variant of ER-alpha. The American journal of pathology 177, 964-973, doi:10.2353/ajpath.2010.100061 (2010).
45 Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525-529, doi:10.1038/s41586-019-0979-8 (2019).
46 Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer cell, doi:10.1016/j.ccell.2021.02.015 (2021).
47 Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nature protocols 15, 1484-1506, doi:10.1038/s41596-020-0292-x (2020).
48 Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nature reviews. Cancer 19, 307-325, doi:10.1038/s41568-019-0144-6 (2019).
49 Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nature medicine 24, 978-985, doi:10.1038/s41591-018-0045-3 (2018).
50 La Manno, G. et al. RNA velocity of single cells. Nature 560, 494-498, doi:10.1038/s41586-018-0414-6 (2018).
51 Dammeijer, F. et al. The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer cell 38, 685-700.e688, doi:10.1016/j.ccell.2020.09.001 (2020).
52 Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nature methods 14, 309-315, doi:10.1038/nmeth.4150 (2017).
53 Lu, Y. et al. Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell 180, 1081-1097.e1024, doi:10.1016/j.cell.2020.02.015 (2020).
54 Kim, S. S. et al. B Cells Improve Overall Survival in HPV-Associated Squamous Cell Carcinomas and Are Activated by Radiation and PD-1 Blockade. Clinical cancer research : an official journal of the American Association for Cancer Research 26, 3345-3359, doi:10.1158/1078-0432.Ccr-19-3211 (2020).
55 Li, H. et al. Fc receptor-like 4 and 5 define human atypical memory B cells. International immunology 32, 755-770, doi:10.1093/intimm/dxaa053 (2020).
56 Yeo, L. et al. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. Annals of the rheumatic diseases 74, 928-935, doi:10.1136/annrheumdis-2013-204116 (2015).
57 Siewe, B., Nipper, A. J., Sohn, H., Stapleton, J. T. & Landay, A. FcRL4 Expression Identifies a Pro-inflammatory B Cell Subset in Viremic HIV-Infected Subjects. Frontiers in immunology 8, 1339, doi:10.3389/fimmu.2017.01339 (2017).
58 Kreslavsky, T. et al. Essential role for the transcription factor Bhlhe41 in regulating the development, self-renewal and BCR repertoire of B-1a cells. Nature immunology 18, 442-455, doi:10.1038/ni.3694 (2017).
59 Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nature medicine 25, 1916-1927, doi:10.1038/s41591-019-0654-5 (2019).
60 Riaz, N. et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 171, 934-949.e916, doi:10.1016/j.cell.2017.09.028 (2017).
61 Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nature methods 17, 159-162, doi:10.1038/s41592-019-0667-5 (2020).
62 Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature immunology 20, 163-172, doi:10.1038/s41590-018-0276-y (2019).
63 Allard, B., Panariti, A. & Martin, J. G. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in immunology 9, 1777, doi:10.3389/fimmu.2018.01777 (2018).
64 Zhang, L. et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell 181, 442-459.e429, doi:10.1016/j.cell.2020.03.048 (2020).
65 Zhang, Y., Du, W., Chen, Z. & Xiang, C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Experimental cell research 359, 449-457, doi:10.1016/j.yexcr.2017.08.028 (2017).
66 Barrett, C. W. et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. The Journal of clinical investigation 125, 2646-2660, doi:10.1172/jci76099 (2015).
67 Zilionis, R. et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity 50, 1317-1334.e1310, doi:10.1016/j.immuni.2019.03.009 (2019).
68 Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nature methods 12, 453-457, doi:10.1038/nmeth.3337 (2015).
69 Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nature reviews. Immunology 20, 7-24, doi:10.1038/s41577-019-0210-z (2020).
70 Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257-262, doi:10.1038/s41586-020-2134-y (2020).
71 Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792-809.e723, doi:10.1016/j.cell.2021.01.010 (2021).
72 Liu, Y. et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nature communications 12, 741, doi:10.1038/s41467-021-21043-4 (2021).
73 Block, I. et al. CFP suppresses breast cancer cell growth by TES-mediated upregulation of the transcription factor DDIT3. Oncogene 38, 4560-4573, doi:10.1038/s41388-019-0739-0 (2019).
74 Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nature reviews. Cancer 20, 485-503, doi:10.1038/s41568-020-0281-y (2020).
75 Sinha, P., Clements, V. K., Fulton, A. M. & Ostrand-Rosenberg, S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer research 67, 4507-4513, doi:10.1158/0008-5472.Can-06-4174 (2007).
76 Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nature reviews. Immunology 18, 134-147, doi:10.1038/nri.2017.105 (2018).
77 Ntanasis-Stathopoulos, I., Fotiou, D. & Terpos, E. CCL3 Signaling in the Tumor Microenvironment. Advances in experimental medicine and biology 1231, 13-21, doi:10.1007/978-3-030-36667-4_2 (2020).
78 Mukaida, N., Sasaki, S. I. & Baba, T. CCL4 Signaling in the Tumor Microenvironment. Advances in experimental medicine and biology 1231, 23-32, doi:10.1007/978-3-030-36667-4_3 (2020).
79 Lok, L. S. C. et al. Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes. Proceedings of the National Academy of Sciences of the United States of America 116, 19083-19089, doi:10.1073/pnas.1905054116 (2019).
80 Cui, C. et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell, doi:10.1016/j.cell.2021.04.016 (2021).
81 Lu, C. H. et al. Intermediate Molecular Mass Hyaluronan and CD44 Receptor Interactions Enhance Neutrophil Phagocytosis and IL-8 Production via p38- and ERK1/2-MAPK Signalling Pathways. Inflammation 40, 1782-1793, doi:10.1007/s10753-017-0622-5 (2017).
82 Dey, I., Giembycz, M. A. & Chadee, K. Prostaglandin E(2) couples through EP(4) prostanoid receptors to induce IL-8 production in human colonic epithelial cell lines. British journal of pharmacology 156, 475-485, doi:10.1111/j.1476-5381.2008.00056.x (2009).
83 Neuwelt, A. J. et al. Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms. Journal for immunotherapy of cancer 8, doi:10.1136/jitc-2019-000441 (2020).
84 Conforti, F. et al. Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. The Lancet. Oncology 19, 737-746, doi:10.1016/s1470-2045(18)30261-4 (2018).
85 Garon, E. B. et al. Randomized phase II study of fulvestrant and erlotinib compared with erlotinib alone in patients with advanced or metastatic non-small cell lung cancer. Lung Cancer 123, 91-98, doi:10.1016/j.lungcan.2018.06.013 (2018).
86 Mazieres, J. et al. Randomized Phase II Trial Evaluating Treatment with EGFR-TKI Associated with Antiestrogen in Women with Nonsquamous Advanced-Stage NSCLC: IFCT-1003 LADIE Trial. Clinical cancer research : an official journal of the American Association for Cancer Research 26, 3172-3181, doi:10.1158/1078-0432.Ccr-19-3056 (2020).
87 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e1821, doi:10.1016/j.cell.2019.05.031 (2019).
88 Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell systems 8, 281-291.e289, doi:10.1016/j.cels.2018.11.005 (2019).
89 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology 36, 411-420, doi:10.1038/nbt.4096 (2018).
90 Keeley, T., Costanzo-Garvey, D. L. & Cook, L. M. Unmasking the Many Faces of Tumor-Associated Neutrophils and Macrophages: Considerations for Targeting Innate Immune Cells in Cancer. Trends in cancer 5, 789-798, doi:10.1016/j.trecan.2019.10.013 (2019).
91 Maynard, A. et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 182, 1232-1251.e1222, doi:10.1016/j.cell.2020.07.017 (2020).
92 Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nature biotechnology 38, 1408-1414, doi:10.1038/s41587-020-0591-3 (2020).
93 Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic acids research 47, W556-w560, doi:10.1093/nar/gkz430 (2019).