1 Cantoni, G. L. Biological methylation: selected aspects. Annu Rev Biochem 44, 435-451, doi:10.1146/annurev.bi.44.070175.002251 (1975).
2 Froese, D. S., Fowler, B. & Baumgartner, M. R. Vitamin B12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 42, 673-685, doi:10.1002/jimd.12009 (2019).
3 Poirier, L. A., Herrera, L. A. C. & Wise, C. in Regulatory Research Perspectives Vol. 3 (National Center for Toxicological Research, 2003).
4 Potter, J. D. Methyl supply, methyl metabolizing enzymes and colorectal neoplasia. J Nutr 132, 2410S-2412S, doi:10.1093/jn/132.8.2410S (2002).
5 Ziegler, R. G., Weinstein, S. J. & Fears, T. R. Nutritional and genetic inefficiencies in one-carbon metabolism and cervical cancer risk. J Nutr 132, 2345S-2349S, doi:10.1093/jn/132.8.2345S (2002).
6 Longnecker, D. S. Abnormal methyl metabolism in pancreatic toxicity and diabetes. J Nutr 132, 2373S-2376S, doi:10.1093/jn/132.8.2373S (2002).
7 Aavik, E., Babu, M. & Yla-Herttuala, S. DNA methylation processes in atheosclerotic plaque. Atherosclerosis 281, 168-179, doi:10.1016/j.atherosclerosis.2018.12.006 (2019).
8 Troen, A. M., Lutgens, E., Smith, D. E., Rosenberg, I. H. & Selhub, J. The atherogenic effect of excess methionine intake. Proc Natl Acad Sci U S A 100, 15089-15094, doi:10.1073/pnas.2436385100 (2003).
9 Malinowska, A. & Chmurzynska, A. Polymorphism of genes encoding homocysteine metabolism-related enzymes and risk for cardiovascular disease. Nutr Res 29, 685-695, doi:10.1016/j.nutres.2009.09.018 (2009).
10 Rader, J. I. Folic acid fortification, folate status and plasma homocysteine. J Nutr 132, 2466S-2470S, doi:10.1093/jn/132.8.2466S (2002).
11 Lippi, G. & Plebani, M. Hyperhomocysteinemia in health and disease: where we are now, and where do we go from here ? Clinical chemistry and laboratory medicine 50, 2075-2080, doi:10.1515/cclm-2012-0372 [doi] (2012).
12 Hardy, M. L. et al. S-adenosyl-L-methionine for treatment of depression, osteoarthritis, and liver disease. Evid Rep Technol Assess (Summ), 1-3 (2003).
13 Mischoulon, D. et al. A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depressive disorder. J Clin Psychiatry 75, 370-376, doi:10.4088/JCP.13m08591 (2014).
14 Gerbarg, P. L., Muskin, P. R., Bottiglieri, T. & Brown, R. P. Failed studies should not be used to malign good treatments. J Clin Psychiatry 75, e1328, doi:10.4088/JCP.14lr09266 (2014).
15 Mischoulon, D. et al. Dr. Mischoulon and colleagues reply. J Clin Psychiatry 75, e1328-1329, doi:10.4088/JCP.14lr09266a (2014).
16 Sarris, J. et al. Is S-Adenosyl Methionine (SAMe) for Depression Only Effective in Males? A Re-Analysis of Data from a Randomized Clinical Trial. Pharmacopsychiatry 48, 141-144, doi:10.1055/s-0035-1549928 (2015).
17 Sakurai, H. et al. Dose increase of S-Adenosyl-Methionine and escitalopram in a randomized clinical trial for major depressive disorder. J Affect Disord 262, 118-125, doi:10.1016/j.jad.2019.10.040 (2020).
18 Guo, T., Chang, L., Xiao, Y. & Liu, Q. S-adenosyl-L-methionine for the treatment of chronic liver disease: a systematic review and meta-analysis. PLoS One 10, e0122124, doi:10.1371/journal.pone.0122124 (2015).
19 Najm, W. I., Reinsch, S., Hoehler, F., Tobis, J. S. & Harvey, P. W. S-adenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: a double-blind cross-over trial. [ISRCTN36233495]. BMC Musculoskelet Disord 5, 6, doi:10.1186/1471-2474-5-6 (2004).
20 Sauer, J., Mason, J. B. & Choi, S. W. Too much folate: a risk factor for cancer and cardiovascular disease? Curr Opin Clin Nutr Metab Care 12, 30-36, doi:10.1097/MCO.0b013e32831cec62 (2009).
21 Fustin, J. M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793-806, doi:10.1016/j.cell.2013.10.026 [doi] (2013).
22 Fustin, J. M. et al. Methylation deficiency disrupts biological rhythms from bacteria to humans. Commun Biol 3, 211, doi:10.1038/s42003-020-0942-0 (2020).
23 Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America 101, 5339-5346, doi:10.1073/pnas.0308709101 [doi] (2004).
24 Lin, D. W., Chung, B. P. & Kaiser, P. S-adenosylmethionine limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1. J Cell Sci 127, 50-59, doi:10.1242/jcs.127811 (2014).
25 Haws, S. A. et al. Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Mol Cell 78, 210-223 e218, doi:10.1016/j.molcel.2020.03.004 (2020).
26 Shima, H. et al. S-Adenosylmethionine Synthesis Is Regulated by Selective N(6)-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Rep 21, 3354-3363, doi:10.1016/j.celrep.2017.11.092 (2017).
27 Matsuo, Y. & Greenberg, D. M. A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties. The Journal of biological chemistry 230, 545-560 (1958).
28 Kozich, V. et al. Cystathionine beta-synthase mutations: effect of mutation topology on folding and activity. Human mutation 31, 809-819, doi:10.1002/humu.21273 [doi] (2010).
29 Zwighaft, Z. et al. Circadian Clock Control by Polyamine Levels through a Mechanism that Declines with Age. Cell metabolism 22, 874-885, doi:10.1016/j.cmet.2015.09.011 [doi] (2015).
30 Avila, M. A., Garcia-Trevijano, E. R., Lu, S. C., Corrales, F. J. & Mato, J. M. Methylthioadenosine. The international journal of biochemistry & cell biology 36, 2125-2130, doi:10.1016/j.biocel.2003.11.016 [doi] (2004).
31 Tang, B., Lee, H. O., An, S. S., Cai, K. Q. & Kruger, W. D. Specific Targeting of MTAP-Deleted Tumors with a Combination of 2'-Fluoroadenine and 5'-Methylthioadenosine. Cancer Res 78, 4386-4395, doi:10.1158/0008-5472.CAN-18-0814 (2018).
32 Appleby, T. C., Erion, M. D. & Ealick, S. E. The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Structure (London, England : 1993) 7, 629-641, doi:S0969-2126(99)80084-7 [pii] (1999).
33 Kamatani, N. & Carson, D. A. Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts. Biochimica et biophysica acta 675, 344-350, doi:0304-4165(81)90024-6 [pii] (1981).
34 Hershfield, M. S. & Seegmiller, J. E. Regulation of de novo purine biosynthesis in human lymphoblasts. Coordinate control of proximal (rate-determining) steps and the inosinic acid branch point. J Biol Chem 251, 7348-7354 (1976).
35 Aronow, L. Reversal of adenine toxicity by pyrimidine mucleosides. Biochimica et biophysica acta 47, 184-185, doi:0006-3002(61)90846-0 [pii] (1961).
36 Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science (New York, N.Y.) 302, 255-259, doi:10.1126/science.1086271 [doi] (2003).
37 Snyder, F. F., Hershfield, M. S. & Seegmiller, J. E. Cytotoxic and metabolic effects of adenosine and adenine on human lymphoblasts. Cancer research 38, 2357-2362 (1978).
38 Hershfield, M. S., Snyder, F. F. & Seegmiller, J. E. Adenine and adenosine are toxic to human lymphoblast mutants defective in purine salvage enzymes. Science (New York, N.Y.) 197, 1284-1287, doi:10.1126/science.197600 [doi] (1977).
39 Cantoni, G. L. The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Progress in clinical and biological research 198, 47-65 (1985).
40 Schanche, J. S., Schanche, T., Ueland, P. M. & Montgomery, J. A. Inactivation and reactivation of intracellular S-adenosylhomocysteinase in the presence of nucleoside analogues in rat hepatocytes. Cancer research 44, 4297-4302 (1984).
41 Ueland, P. M. S-Adenosylhomocysteinase from mouse liver. Inactivation of the enzyme in the presence of metabolites. The International journal of biochemistry 14, 207-213, doi:10.1016/0020-711x(82)90140-9 [doi] (1982).
42 Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science (New York, N.Y.) 351, 1214-1218, doi:10.1126/science.aad5214 [doi] (2016).
43 Hong, S. et al. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107, 21211-21216, doi:10.1073/pnas.1011987107 (2010).
44 Bigaud, E. & Corrales, F. J. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease. Mol Cell Proteomics 15, 1498-1510, doi:10.1074/mcp.M115.055772 (2016).
45 Fustin, J. M. et al. Two Ck1delta transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America 115, 5980-5985, doi:10.1073/pnas.1721371115 [doi] (2018).
46 Valekunja, U. K. et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A 110, 1554-1559, doi:10.1073/pnas.1214168110 (2013).
47 Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17, 1414-1421, doi:10.1038/nsmb.1961 (2010).
48 Greco, C. M. et al. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. Sci Adv 6, doi:10.1126/sciadv.abc5629 (2020).
49 Regestein, Q. R. & Monk, T. H. Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry 152, 602-608, doi:10.1176/ajp.152.4.602 (1995).
50 Jones, C. R. et al. Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nature medicine 5, 1062-1065, doi:10.1038/12502 [doi] (1999).
51 Gusarov, I. et al. Dietary thiols accelerate aging of C. elegans. Nat Commun 12, 4336, doi:10.1038/s41467-021-24634-3 (2021).
52 Hershfield, M. S. & Krodich, N. M. S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science (New York, N.Y.) 202, 757-760, doi:10.1126/science.715439 [doi] (1978).
53 Kredich, N. M. & Martin, D. V., Jr. Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell 12, 931-938, doi:0092-8674(77)90157-X [pii] (1977).
54 Hershfield, M. S. Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 15, 571-577, doi:10.1016/s0952-7915(03)00104-3 (2003).
55 Nyhan, W. L. Disorders of purine and pyrimidine metabolism. Mol Genet Metab 86, 25-33, doi:10.1016/j.ymgme.2005.07.027 (2005).
56 Dillman, R. O. Pentostatin (Nipent) in the treatment of chronic lymphocyte leukemia and hairy cell leukemia. Expert review of anticancer therapy 4, 27-36, doi:ERA040104 [pii] (2004).
57 Bachmann, V. et al. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 22, 962-970, doi:10.1093/cercor/bhr173 (2012).
58 Retey, J. V. et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 102, 15676-15681, doi:10.1073/pnas.0505414102 (2005).
59 Diwan, V., Brown, L. & Gobe, G. C. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 23, 5-11, doi:10.1111/nep.13180 (2018).
60 Motohashi, H. et al. The circadian clock is disrupted in mice with adenine-induced tubulointerstitial nephropathy. Kidney Int 97, 728-740, doi:10.1016/j.kint.2019.09.032 (2020).
61 Myung, J. et al. The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock. Int J Mol Sci 20, doi:10.3390/ijms20112765 (2019).
62 Zielinski, T., Moore, A. M., Troup, E., Halliday, K. J. & Millar, A. J. Strengths and limitations of period estimation methods for circadian data. PloS one 9, e96462, doi:10.1371/journal.pone.0096462 [doi] (2014).
63 Soga, T. & Heiger, D. N. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72, 1236-1241, doi:10.1021/ac990976y (2000).
64 Soga, T. et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2, 488-494, doi:10.1021/pr034020m (2003).
65 Soga, T. et al. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74, 2233-2239, doi:10.1021/ac020064n (2002).
66 Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T. & Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6, 78-95, doi:10.1007/s11306-009-0178-y (2010).
67 Chong, J. & Xia, J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. Methods Mol Biol 2104, 337-360, doi:10.1007/978-1-0716-0239-3_17 (2020).
68 Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6, 743-760, doi:10.1038/nprot.2011.319 (2011).
69 Xia, J. & Wishart, D. S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr Protoc Bioinformatics Chapter 14, Unit 14 10, doi:10.1002/0471250953.bi1410s34 (2011).
70 Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46, W537-W544, doi:10.1093/nar/gky379 (2018).
71 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).
72 Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47, D766-D773, doi:10.1093/nar/gky955 (2019).
73 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357-360, doi:10.1038/nmeth.3317 (2015).
74 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667, doi:10.1038/nprot.2016.095 (2016).
75 Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290-295, doi:10.1038/nbt.3122 (2015).
76 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140, doi:10.1093/bioinformatics/btp616 (2010).
77 Liu, R. et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res 43, e97, doi:10.1093/nar/gkv412 (2015).
78 Reich, M. et al. GenePattern 2.0. Nat Genet 38, 500-501, doi:10.1038/ng0506-500 (2006).