1. Scanzello CR. Role of low-grade inflammation in osteoarthritis. Current opinion in rheumatology. 2017; 29: 79-85.
2. Pedersen JL. Inflammatory pain in experimental burns in man. Danish medical bulletin. 2000; 47: 168-95.
3. Liao HY, Hsieh CL, Huang CP, Lin YW. Electroacupuncture Attenuates CFA-induced Inflammatory Pain by suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice. Scientific reports. 2017; 7: 42531.
4. Vendramini-Costa DB, Spindola HM, de Mello GC, Antunes E, Pilli RA, de Carvalho JE. Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life sciences. 2015; 139: 83-90.
5. Qin BH, Liu XQ, Yuan QY, Wang J, Han HY. Anti-Inflammatory Triterpenoids from the Caulophyllum robustum Maximin LPS-Stimulated RAW264.7 Cells. Molecules. 2018; 23(5): 1149.
6. Saragusti AC, Bustos PS, Pierosan L, Cabrera JL, Chiabrando GA, Santos AR, et al. Involvement of the L-arginine-nitric oxide pathway in the antinociception caused by fruits of Prosopis strombulifera (Lam.) Benth. Journal of ethnopharmacology. 2012; 140: 117-22.
7. Price TJ, Dussor G. AMPK: An emerging target for modification of injury-induced pain plasticity. Neuroscience letters. 2013; 557 Pt A: 9-18.
8. Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, et al. Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Molecular pain. 2011; 7: 70.
9. Burton MD, Tillu DV, Mazhar K, Mejia GL, Asiedu MN, Inyang K, et al. Pharmacological activation of AMPK inhibits incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming in mice. Neuroscience. 2017; 359: 119-29.
10. Martin LM, Moller M, Weiss U, Russe OQ, Scholich K, Pierre S, et al. 5-Amino-1-beta-D-Ribofuranosyl-Imidazole-4-Carboxamide (AICAR) Reduces Peripheral Inflammation by Macrophage Phenotype Shift. International journal of molecular sciences. 2019; 20(13):3255.
11. Cheng Y, Feng Y, Xia Z, Li X, Rong J. omega-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1alpha and iNOS. Biochimica et biophysica acta Molecular and cell biology of lipids. 2017; 1862: 1595-605.
12. Park SY, Baik YH, Cho JH, Kim S, Lee KS, Han JS. Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine. 2008; 44: 126-34.
13. Yu Q, Zeng K, Ma X, Song F, Jiang Y, Tu P, et al. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-kappaB and JNK/p38 MAPK signaling pathways. International immunopharmacology. 2016; 38: 104-14.
14. Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochemical pharmacology. 2012; 84: 581-90.
15. Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox biology. 2015; 6: 472-85.
16. Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging cell. 2017; 16: 943-55.
17. Gao F, Xiang HC, Li HP, Jia M, Pan XL, Pan HL, et al. Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain, behavior, and immunity. 2018; 67: 91-100.
18. Ghasemlou N, Chiu IM, Julien JP, Woolf CJ. CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112: E6808-17.
19. Zhou H, Zhang Z, Wei H, Wang F, Guo F, Gao Z, et al. Activation of STAT3 is involved in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptors in rats. Brain research. 2013; 1529: 154-64.
20. Zhang G, Sheng M, Wang J, Teng T, Sun Y, Yang Q, et al. Zinc improves mitochondrial respiratory function and prevents mitochondrial ROS generation at reperfusion by phosphorylating STAT3 at Ser(727). Journal of molecular and cellular cardiology. 2018; 118: 169-82.
21. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. Journal of neuroscience methods. 1994; 53: 55-63.
22. Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, et al. PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nature neuroscience. 2017; 20: 917-26.
23. D'Annessa I, Gandaglia A, Brivio E, Stefanelli G, Frasca A, Landsberger N, et al. Tyr120Asp mutation alters domain flexibility and dynamics of MeCP2 DNA binding domain leading to impaired DNA interaction: Atomistic characterization of a Rett syndrome causing mutation. Biochimica et biophysica acta General subjects. 2018; 1862: 1180-9.
24. Lage R, Dieguez C, Vidal-Puig A, Lopez M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in molecular medicine. 2008; 14: 539-49.
25. Peixoto CA, Oliveira WH, Araujo S, Nunes AKS. AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Experimental neurology. 2017; 298: 31-41.
26. Zhang Y, Qiu J, Wang X, Zhang Y, Xia M. AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arteriosclerosis, thrombosis, and vascular biology. 2011; 31: 2897-908.
27. He C, Li H, Viollet B, Zou MH, Xie Z. AMPK Suppresses Vascular Inflammation In Vivo by Inhibiting Signal Transducer and Activator of Transcription-1. Diabetes. 2015; 64: 4285-97.
28. Rutherford C, Speirs C, Williams JJ, Ewart MA, Mancini SJ, Hawley SA, et al. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Science signaling. 2016; 9: ra109.
29. Mancini SJ, White AD, Bijland S, Rutherford C, Graham D, Richter EA, et al. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Molecular and cellular endocrinology. 2017; 440: 44-56.
30. Jeon SM. Regulation and function of AMPK in physiology and diseases. Experimental & molecular medicine. 2016; 48: e245.
31. Russe OQ, Moser CV, Kynast KL, King TS, Stephan H, Geisslinger G, et al. Activation of the AMP-activated protein kinase reduces inflammatory nociception. The journal of pain : official journal of the American Pain Society. 2013; 14: 1330-40.
32. Zhao X, Li Y, Lin X, Wang J, Zhao X, Xie J, et al. Ozone induces autophagy in rat chondrocytes stimulated with IL-1beta through the AMPK/mTOR signaling pathway. Journal of pain research. 2018; 11: 3003-17.
33. Yang Y, Zhang J, Liu Y, Zheng Y, Bo J, Zhou X, et al. Role of nitric oxide synthase in the development of bone cancer pain and effect of L-NMMA. Molecular medicine reports. 2016; 13: 1220-6.
34. Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A. TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PloS one. 2009; 4: e7596.
35. Tang Q, Svensson CI, Fitzsimmons B, Webb M, Yaksh TL, Hua XY. Inhibition of spinal constitutive NOS-2 by 1400W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. The European journal of neuroscience. 2007; 25: 2964-72.
36. De Alba J, Clayton NM, Collins SD, Colthup P, Chessell I, Knowles RG. GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain. 2006; 120: 170-81.
37. Chen LC, Lin YY, Jean YH, Lu Y, Chen WF, Yang SN, et al. Anti-inflammatory and analgesic effects of the marine-derived compound comaparvin isolated from the crinoid Comanthus bennetti. Molecules. 2014; 19: 14667-86.
38. Kang OH, Chae HS, Oh YC, Choi JG, Lee YS, Jang HJ, et al. Anti-nociceptive and anti-inflammatory effects of Angelicae dahuricae radix through inhibition of the expression of inducible nitric oxide synthase and NO production. The American journal of Chinese medicine. 2008; 36: 913-28.
39. Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019; 200: 35-47.
40. Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth factors. 2012; 30: 88-106.
41. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine & growth factor reviews. 2016; 31: 1-15.
42. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994; 77: 63-71.
43. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science. 1995; 269: 81-3.
44. Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nature reviews Molecular cell biology. 2002; 3: 651-62.
45. Cheng DL, Fang HX, Liang Y, Zhao Y, Shi CS. MicroRNA-34a promotes iNOS secretion from pulmonary macrophages in septic suckling rats through activating STAT3 pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018; 105: 1276-82.
46. Gupta S, Goldberg JM, Aziz N, Goldberg E, Krajcir N, Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertility and sterility. 2008; 90: 247-57.
47. Malcangio M. Role of the immune system in neuropathic pain. Scandinavian journal of pain. 2019; 20: 33-7.