1. Banacloche, S., Gamarra, A. R., Lechon, Y., Bustreo, C. Socioeconomic and environmental impacts of bringing the sun to earth: A sustainability analysis of a fusion power plant deployment. Energy 209, 118460 (2020).
2. Wesson, J. Tokamaks 4th edn, Ch. 1, 2-27 & Ch. 13, 764-767 (Oxford Univ. Press, Oxford, 2011).
3. Wagner, F. et al. Regime of Improved Confinement and High Beta in. Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak. Phys. Rev. Lett. 49, 1408-1412 (1982).
4. Shimada, M. et al. Progress in the ITER physics basis - Chapter 1: Overview and summary. Nucl. Fusion 47, S1-S17 (2007).
5. Barbarino, M. A brief history of nuclear fusion. Nat. Phys. 16, 890–893 (2020).
6. The way ahead for fusion. Nat. Phys. 16, 889 (2020).
7. Reichert, S. Inside ITER. Nat. Phys. 16, 895 (2020).
8. Na, Y. S. et al. On hybrid scenarios in KSTAR. Nucl. Fusion 60, 086006 (2020).
9. Luce T. C. et al. Development of advanced inductive scenarios for ITER. Nucl. Fusion 54, 013015 (2014).
10. Y. Kamada et al., Long sustainment of JT-60U plasmas with high integrated performance. Nucl. Fusion 39 1845 (1999).
11. Ferron J. R. et al., Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injection. Phys. Plasmas 20, 092504 (2013).
12. Yoon, S.W. et al. Characteristics of the first H-mode discharges in KSTAR. Nucl. Fusion 51, 113009 (2011).
13. Li, J., Guo, H. & Wan, B. et al. A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak. Nat. Phys. 9, 817–821 (2013).
14. Keilhacker, M. et al. Confinement studies in L and H-type Asdex discharges. Plasma Phys. Control. Fusion 26, 49-63 (1984).
15. Zohm, H. et al. Edge localized modes (ELMs). Plasma Phys. Control. Fusion 38, 105-128 (1996).
16. Lang, P. T. et al. ELM frequency control by continuous small pellet injection in ASDEX Upgrade. Nucl. Fusion 43, 1110-1120 (2003).
17. Degeling, A.W. et al. Magnetic triggering of ELMs in TCV. Plasma Phys. Control. Fusion 45, 1637-1655 (2003).
18. Evans, T. E. et al. Suppression of Large Edge-Localized Modes in High-Confinement DIII-D Plasmas with a Stochastic Magnetic Boundary. Phys. Rev. Lett. 92, 235003 (2004).
19. Evans, T. E. et al. Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas. Nat. Phys. 2, 419–423 (2006).
20. Jeon, Y. M. et al. Suppression of Edge Localized Modes in High-Confinement KSTAR Plasmas by Nonaxisymmetric Magnetic Perturbations. Phys. Rev. Lett. 109, 035004 (2012).
21. Park, J.-K. et al. 3D field phase-space control in tokamak plasmas. Nat. Phys. 14, 1223–1228 (2018).
22. Loarte, A. et al. Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation. Nucl. Fusion 54, 033007 (2014).
23. Burrell, K. H. Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Phys. Plasmas 4, 1499 (1997).
24. Conway, G. D. et al., Suppression of Plasma Turbulence During Optimized Shear Configurations in JET, Phys. Rev. Lett. 84, 1463 (2000)
25. Chung, J. et al. Formation of the internal transport barrier in KSTAR. Nucl. Fusion 58, 016019 (2018).
26. Koide, Y. et al. Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high-βp discharges. Phys. Rev. Lett. 72, 3662 (1994).
27. Levinton, F. M. et al. Improved Confinement with Reversed Magnetic Shear in TFTR. Phys. Rev. Lett. 75, 4417 (1995).
28. Strait, E. J. et al. Enhanced Confinement and Stability in DIII-D Discharges with Reversed Magnetic Shear. Phys. Rev. Lett. 75, 4421 (1995).
29. Tardini, G. et al. Thermal ions dilution and ITG suppression in ASDEX Upgrade ion ITBs. Nucl. Fusion 47, 280 (2007).
30. Park, H. K. & Sabbagh, S. A. Effect of the neutral beam fuelling profile on fusion power, confinement and stability in TFTR. Nucl. Fusion 37, 629–42 (1997).
31. Lee, G. S. et al. Design and construction of the KSTAR tokamak. Nucl. Fusion 41, 1515 (2001).
32. Yushmanov, P. N. et al. Scalings for tokamak energy confinement. Nucl. Fusion 30, 1999 (1990).
33. Crisanti, F. et al. JET Quasistationary Internal-Transport-Barrier Operation with Active Control of the Pressure Profile. Phys. Rev. Lett. 88, 145004 (2002).
34. Manickam, J. et. al. Ideal MHD stability properties of pressure driven modes in low shear tokamaks. Nucl. Fusion 27, 1461 (1987).
35. Chu, M. S. et al. Resistive Interchange Modes in Negative Central Shear Tokamaks with Peaked Pressure Profiles. Phys. Rev. Lett. 77, 2710 (1996).
36. Okabayashi, M. et. al. Mode structure of disruption precursors in TFTR enhanced reversed shear discharges. Nucl. Fusion 38, 1149 (1998).
37. de Vries, P. C. et al. Survey of disruption causes at JET. Nucl. Fusion 51, 053018 (2011).
38. ITER Research Plan within the Staged Approach. ITER Technical Report ITR-18-003 (2018).
39. Hollmann, E. M. et al. Status of research toward the ITER disruption mitigation system. Phys. Plasmas 22, 021802 (2015).
40. Strait, E. J. Stability of high beta tokamak plasmas. Phys. Plasmas 1, 1415 (1994)
41. Chapman, I. T. et al. Analysis of high β regimes for DEMO. Fusion Eng. Des. 86, 141-150 (2011)
42. Giruzzi, G. et al. Modelling of pulsed and steady-state DEMO scenarios. Nucl. Fusion 55, 073002 (2015)
43. Kim, H.-S. et al. Characteristics of global energy confinement in KSTAR L- and H-mode plasmas. Nucl. Fusion 54, 083012 (2014).
44. Conner, J. W. & Wilson, H. R. Survey of theories of anomalous transport. Plasma Phys. Control. Fusion 36, 719 (1994).
45. Hahm, T. S. & Tang, W. M. Properties of ion temperature gradient drift instabilities in H-mode plasmas. Phys. Plasmas 1, 1185 (1989).
46. Guo S.C. & Romanelli F. The linear threshold of the ion‐temperature‐gradient‐driven mode. Phys. Plasmas 5, 520 (1993).
47. Citrin, J. et al. Nonlinear Stabilization of Tokamak Microturbulence by Fast Ions. Phys. Rev. Lett. 111, 155001 (2013).
48. Romanelli, M. et al. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation. Plasma Phys. Control. Fusion 52, 045007 (2010).
49. Garcia, J. et al. Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55, 053007 (2015).
50. Di Siena, A. et al. Nonlinear electromagnetic interplay between fast ions and ion-temperature-gradient plasma turbulence. J. Plasma Phys. 87, 555870201 (2021).
51. Connor, J.W. et al. A review of internal transport barrier physics for steady-state operation of tokamaks. Nucl. Fusion 44, R1–R49 (2004)
52. Peeters, A. G. et al. The nonlinear gyro-kinetic flux tube code GKW. Comput. Phys. Commun. 180, 2650 (2009).
53. Bourdelle, C. et al. Impact of the α parameter on the microstability of internal transport barriers. Nucl. Fusion 45, 110 (2005).
54. Hahm T.S. & Burrell K.H. Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma. Phys. Plasmas 2, 1648 (1995).
55. Burrell, K. H. Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Phys. Plasmas 4, 1499 (1997).
56. Greenfield C.M. et al. Transport and performance in DIII-D discharges with weak or negative central magnetic shear. Phys. Plasmas 4, 1596 (1997).
57. Kamada, Y. Observations on the formation and control of transport barriers. Plasma Phys. Control. Fusion 42, A65 (2000).
58. Kim, K. et al. Status of the KSTAR superconducting magnet system development. Nucl. Fusion 45, 783 (2005).
59. Lee, S. G. et al. Magnetic diagnostics for the first plasma operation in Korea Superconducting Tokamak Advanced Research. Rev. Sci. Instrum. 79, 10F117 (2008).
60. Lao, L.L. et al. Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25, 1611 (1985).
61. Bak, J. G. et al. Initial measurements by using Mirnov coils in the KSTAR machine. in Proc. 37th EPS Conference on Plasma Physics, p. 5.102. (2010).
62. Lee, J. H. et al. Edge profile measurements using Thomson scattering on the KSTAR tokamak. Rev. Sci. Instrum. 85, 11D407 (2014).
63. Ko, W. H. et al. Rotation characteristics during the resonant magnetic perturbation induced edge localized mode suppression on the KSTAR. Rev. Sci. Instrum. 85, 11E413 (2014).
64. Juhn, J.-W. et al. Multi-chord IR–visible two-color interferometer on KSTAR. Rev. Sci. Instrum. 92, 043559 (2021).
65. Chung, J. et al. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR. Rev. Sci. Instrum. 85, 11D827 (2014).
66. Junghee Kim et al., Initial measurements of fast ion loss in KSTAR, Rev. Sci. Instrum. 83, 10D305 (2012)
67. J.W. Yoo et al., Fast-ion Dα spectroscopy diagnostic at KSTAR, Rev. Sci. Instrum., 92, 043504 (2021)
68. Ahn, J.-W. et al, Confinement and ELM characteristics of H-mode plasmas in KSTAR. Nucl. Fusion 52, 114001 (2012).
69. Jeong, S. H. et al. First neutral beam injection experiments on KSTAR tokamak. Rev. Sci. Instrum. 83, 02B102 (2012)
70. Wang, S. J. et al. Recent experimental results of KSTAR RF heating and current drive. AIP Conf. Proc. 1689, 030014 (2015).
71. Lee, C. Y. et al. Development of Integrated Suite of Codes and Its Validation on KSTAR. 28th IAEA Fusion Energy Conference (2021).
72. Pankin, A. et al. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library. Phys. Commun. 159, 157 (2004).
73. Houlberg, W. A. et al. Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio. Physics of Plasmas 4, 3230 (1997).
74. Pereverzev G. et al. Automated System for TRansport Analysis. IPP-Report IPP 5/98 (2002).
75. Sarwar, S. et al. Effective ion charge (Zeff) measurements and impurity behaviour in KSTAR. Rev. Sci. Instrum. 89, 043504 (2018).
76. Angioni, C. & Peeters, A. G. Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function. Phys. Plasmas 15, 052307 (2008).
77. Lutjens H., Bondeson A. & Sauter O. The CHEASE code for toroidal MHD equilibria. Comput. Phys. Commun. 97, 219 (1996).
78. P. H. Diamond et al. On the Dynamics of Transition to Enhanced Confinement of Reversed Magnetic Shear Discharges. Phys. Rev. Lett. 78, 1472-1475 (1997)
79. Yoo, M. G., Lee, J. & Kim, Y. G. et al. Evidence of a turbulent ExB mixing avalanche mechanism of gas breakdown in strongly magnetized systems. Nat Commun 9, 3523 (2018).
80. McDermott, R. M. et al. Edge radial electric field structure and its connections to H -mode confinement in Alcator C-Mod plasmas. Phy. Plasmas 16, 056103 (2009).
81. Whyte, D.G. et al. I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod. Nucl. Fusion 50, 105005 (2010).
82. Manz, P. et al. Geodesic oscillations and the weakly coherent mode in the I-mode of ASDEX Upgrade. Nucl. Fusion 55, 083004 (2015).
83. Marinoni, A. et al. Characterization of density fluctuations during the search for an I-mode regime on the DIII-D tokamak. Nucl. Fusion 55, 093019 (2015).
84. Ryter, F. et al. I-mode studies at ASDEX Upgrade: L-I and I-H transitions, pedestal and confinement properties. Nucl. Fusion 57, 016004 (2017)
85. Fujita, T. et al. Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U. Phys. Rev. Lett. 87, 245001 (2001)