The revolution in technology for storing and processing big data leads to data intensive computing as a new paradigm. To find the valuable and precise big data knowledge, efficient and scalable data mining techniques are required. In data mining, different techniques are applied depending on the kind of knowledge to be mined. Association rules are generated from the frequent itemsets computed by frequent itemset mining (FIM) algorithms. The problem of designing scalable and efficient frequent itemset mining algorithms on the Spark RDD framework. The research done in this thesis aims to improve the performance (in terms of execution time) of the existing Spark-based frequent itemset mining algorithms and efficiently re-design other frequent itemset mining algorithms on Spark. The particular problem of interest is re-designing the Eclat algorithm in the distributed computing environment of the Spark. The paper proposes and implements a parallel Eclat algorithm using the Spark RDD architecture, dubbed RDD-Eclat. EclatV1 is the earliest version, followed by EclatV2, EclatV3, EclatV4, and EclatV5. Each version is the consequence of a different technique and heuristic being applied to the preceding variant. Following EclatV1, the filtered transaction technique is used, followed by heuristics for equivalence class partitioning in EclatV4 and EclatV5. EclatV2 and EclatV3 are slightly different algorithmically, as are EclatV4 and EclatV5. Experiments on synthetic and real-world datasets.