1 Hurt, A. C. & Wheatley, A. K. Neutralizing Antibody Therapeutics for COVID-19. Viruses13, 628 (2021).
2 Alam, S. et al. Therapeutic effectiveness and safety of repurposing drugs for the treatment of COVID-19: position standing in 2021. Front Pharmacol12, 659577, doi:10.3389/fphar.2021.659577 (2021).
3 Ansems, K. et al. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev8, Cd014962, doi:10.1002/14651858.Cd014962 (2021).
4 Wang, Y.-Y. et al. Quality of and recommendations for relevant clinical practice guidelines for COVID-19 management: a systematic review and critical appraisal. Front Med8 doi:10.3389/fmed.2021.630765 (2021).
5 Ngo, B. T. et al. The time to offer treatments for COVID-19. Expert Opin Investig Drugs30, 505-518, doi:10.1080/13543784.2021.1901883 (2021).
6 Phougat, N. et al. Combination therapy: the propitious rationale for drug development. Comb Chem High Throughput Screen17, 53-67, doi:10.2174/13862073113166660065 (2014).
7 Furuta, Y. et al. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res82, 95-102, doi:10.1016/j.antiviral.2009.02.198 (2009).
8 Furuta, Y., Komeno, T. & Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci93, 449-463, doi:10.2183/pjab.93.027 (2017).
9 Wang, Y. et al. The mechanism of action of T-705 as a unique delayed chain terminator on influenza viral polymerase transcription. Biophys Chem277, 106652, doi:https://doi.org/10.1016/j.bpc.2021.106652 (2021).
10 Baranovich, T. et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol87, 3741-3751, doi:10.1128/jvi.02346-12 (2013).
11 Hassanipour, S. et al. The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep11, 11022, doi:10.1038/s41598-021-90551-6 (2021).
12 Department of Medical Services, T. COVID-19 in Thailand, <https://covid19.dms.go.th> (2020).
13 Yang, S. N. Y. et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res177, 104760, doi:10.1016/j.antiviral.2020.104760 (2020).
14 Caly, L., Druce, J. D., Catton, M. G., Jans, D. A. & Wagstaff, K. M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res178, 104787, doi:https://doi.org/10.1016/j.antiviral.2020.104787 (2020).
15 Bryant, A. et al. Ivermectin for prevention and treatment of COVID-19 infection: a systematic review, meta-analysis, and trial sequential analysis to inform clinical guidelines. Am J Ther28, e434-e460, doi:10.1097/mjt.0000000000001402 (2021).
16 Popp M, S. M., Metzendorf MI, Gould S, Kranke P, Meybohm P, Skoetz N, Weibel S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst Rev.28, CD015017, doi:doi: 10.1002/14651858.CD015017.pub2 (2021).
17 Guzzo, C. A. et al. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J Clin Pharmacol42, 1122-1133, doi:10.1177/009127002401382731 (2002).
18 Schilling, W. H. et al. The WHO guideline on drugs to prevent COVID-19: small numbers- big conclusions. Wellcome Open Res6, 71, doi:10.12688/wellcomeopenres.16741.1 (2021).
19 Backer, V. et al. A randomized, double-blind, placebo-controlled phase 1 trial of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-19. Lancet Reg Health Eur4, 100084, doi:10.1016/j.lanepe.2021.100084 (2021).
20 Furuta, Y. et al. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res82, 95-102, doi:10.1016/j.antiviral.2009.02.198 (2009).
21 Shannon, A. et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat Commun11, 4682, doi:10.1038/s41467-020-18463-z (2020).
22 Jochmans, D. et al. Antiviral activity of Favipiravir (T-705) against a broad range of paramyxoviruses in vitro and against Human Metapneumovirus in hamsters. Antimicrob Agents Chemother60, 4620-4629, doi:10.1128/aac.00709-16 (2016).
23 Escribano-Romero, E., Jiménez de Oya, N., Domingo, E. & Saiz, J. C. Extinction of West Nile Virus by Favipiravir through Lethal Mutagenesis. Antimicrob Agents Chemother61, doi:10.1128/aac.01400-17 (2017).
24 Kim, J. A., Seong, R. K., Kumar, M. & Shin, O. S. Favipiravir and Ribavirin Inhibit Replication of Asian and African Strains of Zika Virus in Different Cell Models. Viruses10, doi:10.3390/v10020072 (2018).
25 Pires de Mello, C. P. et al. Clinical regimens of Favipiravir inhibit Zika virus replication in the hollow-fiber infection model. Antimicrob Agents Chemother62, doi:10.1128/aac.00967-18 (2018).
26 Guedj, J. et al. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med15, e1002535-e1002535, doi:10.1371/journal.pmed.1002535 (2018).
27 Goldhill, D. H. et al. Favipiravir-resistant influenza A virus shows potential for transmission. PLoS Pathog17, e1008937, doi:10.1371/journal.ppat.1008937 (2021).
28 Delang, L., Abdelnabi, R. & Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res153, 85-94, doi:10.1016/j.antiviral.2018.03.003 (2018).
29 Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res30, 269-271, doi:10.1038/s41422-020-0282-0 (2020).
30 Jeon, S. et al. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother64, doi:10.1128/aac.00819-20 (2020).
31 Ohashi, H. et al. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience24, 102367, doi:doi.org/10.1016/j.isci.2021.102367 (2021).
32 Driouich, J.-S. et al. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat Commun12, 1735, doi:10.1038/s41467-021-21992-w (2021).
33 Kaptein, S. J. F. et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc Natl Acad Sci U S A117, 26955-26965, doi:10.1073/pnas.2014441117 (2020).
34 Agrawal, U., Raju, R. & Udwadia, Z. F. Favipiravir: A new and emerging antiviral option in COVID-19. Med J. Armed Forces India76, 370-376, doi:doi.org/10.1016/j.mjafi.2020.08.004 (2020).
35 Cai, Q. et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing)6, 1192-1198, doi:10.1016/j.eng.2020.03.007 (2020).
36 Hassanipour, S. et al. The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep11, 11022, doi:10.1038/s41598-021-90551-6 (2021).
37 Mentré, F. et al. Dose regimen of favipiravir for Ebola virus disease. Lancet Infect Dis15, 150-151, doi:10.1016/S1473-3099(14)71047-3 (2015).
38 Nguyen, T. H. T. et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis11, e0005389-e0005389, doi:10.1371/journal.pntd.0005389 (2017).
39 Huchting, J., Vanderlinden, E., Van Berwaer, R., Meier, C. & Naesens, L. Cell line-dependent activation and antiviral activity of T-1105, the non-fluorinated analogue of T-705 (favipiravir). Antiviral Res167, 1-5, doi:10.1016/j.antiviral.2019.04.002 (2019).
40 Favié, L. M. et al. Pharmacokinetics of favipiravir during continuous venovenous haemofiltration in a critically ill patient with influenza. Antivir Ther23, 457-461, doi:10.3851/imp3210 (2018).
41 Irie, K. et al. Pharmacokinetics of Favipiravir in Critically Ill Patients With COVID-19. Clin Transl Sci13, 880-885, doi:10.1111/cts.12827 (2020).
42 Xu, T.-L. et al. Antivirus effectiveness of ivermectin on dengue virus type 2 in Aedes albopictus. PLOS Negl Trop Dis12, e0006934, doi:10.1371/journal.pntd.0006934 (2018).
43 Kongmanas, K. et al. Immortalized stem cell-derived hepatocyte-like cells: An alternative model for studying dengue pathogenesis and therapy. PLOS Negl Trop Dis14, e0008835, doi:10.1371/journal.pntd.0008835 (2020).
44 Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D. & Jans, D. A. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J443, 851-856, doi:10.1042/bj20120150 (2012).
45 Götz, V. et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep6, 23138-23138, doi:10.1038/srep23138 (2016).
46 Vallejos, J. et al. Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19): a structured summary of a study protocol for a randomized controlled trial. Trials21, 965, doi:10.1186/s13063-020-04813-1 (2020).
47 Baraka, O. Z. et al. Ivermectin distribution in the plasma and tissues of patients infected with Onchocerca volvulus. Eur J Clin Pharmacol50, 407-410, doi:10.1007/s002280050131 (1996).
48 Suputtamongkol, Y. et al. Ivermectin accelerates circulating nonstructural protein 1 (NS1) clearance in adult dengue patients: a combined phase 2/3 randomized double-blinded placebo controlled trial. Clin Infect Dis72, e586-e593, doi:10.1093/cid/ciaa1332 (2021).
49 Tan, Y. L., Tan, K. S. W., Chu, J. J. H. & Chow, V. T. Combination treatment with Remdesivir and Ivermectin exerts highly synergistic and potent antiviral activity against murine coronavirus infection. Front Cell Infect Microbiol11, doi:10.3389/fcimb.2021.700502 (2021).
50 Jeffreys, L. et al. Remdesivir-Ivermectin combination displays synergistic interaction with improved in vitro antiviral activity against SARS-CoV-2. BioRxiv, 2020.2012.2023.424232, doi:10.1101/2020.12.23.424232 %J bioRxiv (2020).
51 Kadri, H., Lambourne, O. A. & Mehellou, Y. Niclosamide, a drug with many Repurposes. Chem Med Chem13, 1088-1091, doi:10.1002/cmdc.201800100 (2018).
52 Xu, J., Shi, P.-Y., Li, H. & Zhou, J. Broad spectrum antiviral agent Niclosamide and its therapeutic potential. ACS Infect Dis6, 909-915, doi:10.1021/acsinfecdis.0c00052 (2020).
53 Li, Y. et al. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett349, 8-14, doi:10.1016/j.canlet.2014.04.003 (2014).
54 Gassen, N. C. et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat Commun10, 5770, doi:10.1038/s41467-019-13659-4 (2019).
55 Kao, J.-C. et al. The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLOS Negl Trop Dis12, e0006715-e0006715, doi:10.1371/journal.pntd.0006715 (2018).
56 Fang, J. et al. Identification of three antiviral inhibitors against Japanese encephalitis virus from library of pharmacologically active compounds 1280. PLoS One8, e78425, doi:10.1371/journal.pone.0078425 (2013).
57 Mazzon, M. et al. Identification of broad-spectrum antiviral compounds by targeting viral entry. Viruses11, 176, doi:10.3390/v11020176 (2019).
58 Huang, L., Yang, M., Yuan, Y., Li, X. & Kuang, E. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation. Antiviral Res138, 68-78, doi:10.1016/j.antiviral.2016.12.002 (2017).
59 Niyomdecha, N., Suptawiwat, O., Boonarkart, C., Jitobaom, K. & Auewarakul, P. Inhibition of human immunodeficiency virus type 1 by niclosamide through mTORC1 inhibition. Heliyon6, e04050-e04050, doi:10.1016/j.heliyon.2020.e04050 (2020).
60 Kamat, S. & Kumari, M. Repurposing chloroquine against multiple diseases with special attention to SARS-CoV-2 and associated toxicity. Front Pharmacol12, 576093-576093, doi:10.3389/fphar.2021.576093 (2021).
61 Vincent, M. J. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J2, 69-69, doi:10.1186/1743-422X-2-69 (2005).
62 Musa, I. R. Potential antiviral effect of chloroquine therapy against SARS-CoV-2 infection. Open Access Maced J Med Sci8, 184-191, doi:10.3889/oamjms.2020.4854 (2020).
63 Hoffmann, M. et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature585, 588-590, doi:10.1038/s41586-020-2575-3 (2020).
64 Dittmar, M. et al. Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Rep35, 108959, doi:10.1016/j.celrep.2021.108959 (2021).
65 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell181, 271-280.e278, doi:doi.org/10.1016/j.cell.2020.02.052 (2020).
66 Kashour, Z. et al. Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic review and meta-analysis. J Antimicrob Chemother76, 30-42, doi:10.1093/jac/dkaa403 (2021).
67 Melville, K., Rodriguez, T. & Dobrovolny, H. M. Investigating different mechanisms of action in combination therapy for influenza. Front Pharmacol9, 1207-1207, doi:10.3389/fphar.2018.01207 (2018).
68 Bobrowski, T. et al. Synergistic and antagonistic drug combinations against SARS-CoV-2. Mol Ther29, 873-885, doi:10.1016/j.ymthe.2020.12.016 (2021).
69 Day, D. & Siu, L. L. Approaches to modernize the combination drug development paradigm. Genome Med 8, 115-115, doi:10.1186/s13073-016-0369-x (2016).
70 WHO. Updated recommendations on first-line and second-line antiretroviral regimens and post-exposure prophylaxis and recommendations on early infant diagnosis of HIV. (2018).
71 AASLD. HCV Guidance: Recommendations for testing, managing, and treating Hepatitis C Virus infection. (2021).
72 Kanjanasirirat, P. et al. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci Rep10, 19963, doi:10.1038/s41598-020-77003-3 (2020).
73 Reed, L. J. & Muench, H. A simple method of estimating fifty percent enpoint Am J Epidemiol27, 493-497, doi:10.1093/oxfordjournals.aje.a118408 %J (1938).
74 Ganguly, D. et al. SYBR green one-step qRT-PCR for the detection of SARS-CoV-2 RNA in saliva. 2020.2005.2029.109702, doi:10.1101/2020.05.29.109702 %J bioRxiv (2020).
75 Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res48, W488-W493, doi:10.1093/nar/gkaa216 %J Nucleic Acids Research (2020).
76 Yadav, B., Wennerberg, K., Aittokallio, T. & Tang, J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol13, 504-513, doi:doi.org/10.1016/j.csbj.2015.09.001 (2015).