The applications of this method for stability problems are illustrated in this manuscript. In the context of twisted rods, the counterpart for Euler’s buckling problem is Greenhill's problem, which studies the forming of a loop in an elastic bar under torsion (Greenhill, 1883). We search the optimal shape of the rod along its axis. A priori form of the cross-section remains unknown. For the solution of the actual problem the stability equations take into account all possible convex, simply connected shapes of the cross-section. Thus, we drop the assumption about the equality of principle moments of inertia for the cross-section. The cross-sections are similar geometric figures related by a homothetic transformation with respect to a homothetic center on the axis of the rod and vary along its axis. The distribution of material along the length of a twisted rod is optimized so that the rod is of the constant volume T and will support the maximal moment without spatial buckling. The cross section that delivers the maximum or the minimum for the critical eigenvalue must be determined among all convex, simply connected domains. We demonstrate at the beginning the validity of static Euler’s approach for simply supported rod (hinged), twisted by the conservative moment. The applied method for integration of the optimization criteria delivers different length and volumes of the optimal twisted rods. Instead of the seeking for the twisted rods of the fixed length and volume, we directly compare the twisted rods with the different lengths and cross-sections using the invariant factors. The solution of optimization problem for twisted rod is stated in closed form in terms of the higher transcendental functions. In the torsion stability problem, the optimal shape of cross-section is the equilateral triangle.