1. Temesgen, H., Affleck, D., Poudel, K., Gray, A. and Sessions, J. 2015 A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30 (4), 326-335.
2. Mauya, E.W., Ene, L.T., Bollandsås, O.M., Gobakken, T., Næsset, E., Malimbwi, R.E. et al. 2015 Modelling aboveground forest biomass using airborne laser scanner data in the miombo woodlands of Tanzania. Carbon balance and management, 10 (1), 28.
3. Mauya, E. and Madundo, S. 2021. Aboveground Biomass and Carbon Stock of Usambara Tropical Rainforests In Tanzania. Tanzania Journal of Forestry and Nature Conservation, 90 (2), 63-82.
4. Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K. et al. 2019 The importance of consistent global forest aboveground biomass product validation. Surveys in geophysics, 40 (4), 979-999.
5. Herold, M., Carter, S., Avitabile, V., Espejo, A.B., Jonckheere, I., Lucas, R. et al. 2019 The role and need for space-based forest biomass-related measurements in environmental management and policy. Surveys in Geophysics, 40 (4), 757-778.
6. Naesset, E., Ørka, H.O., Solberg, S., Bollandsås, O.M., Hansen, E.H., Mauya, E. et al. 2016 Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision. Remote sensing of Environment, 175, 282-300.
7. Sinha, S., Jeganathan, C., Sharma, L. and Nathawat, M. 2015 A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12 (5), 1779-1792.
8. Tian, S., Tanase, M.A., Panciera, R., Hacker, J. and Lowell, K. Forest biomass estimation using radar and LiDAR synergies. IEEE, pp. 2145-2148.
9. Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J. et al. 2016 Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 53, 1-15.
10. Boyd, D. and Danson, F. 2005 Satellite remote sensing of forest resources: three decades of research development. Progress in Physical Geography, 29 (1), 1-26.
11. Wulder, M.A., White, J.C., Masek, J.G., Dwyer, J. and Roy, D.P. 2011 Continuity of Landsat observations: Short term considerations. Remote Sensing of Environment, 115 (2), 747-751.
12. Li, C., Zhou, L. and Xu, W. 2021 Estimating Aboveground Biomass Using Sentinel-2 MSI Data and Ensemble Algorithms for Grassland in the Shengjin Lake Wetland, China. Remote Sensing, 13 (8), 1595.
13. Astola, H., Häme, T., Sirro, L., Molinier, M. and Kilpi, J. 2019 Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257-273.
14. Biswas, S., Huang, Q., Anand, A., Mon, M.S., Arnold, F.-E. and Leimgruber, P. 2020 A multi sensor approach to forest type mapping for advancing monitoring of sustainable development goals (SDG) in Myanmar. Remote Sensing, 12 (19), 3220.
15. Forkuor, G., Dimobe, K., Serme, I. and Tondoh, J.E. 2018 Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & remote sensing, 55 (3), 331-354.
16. Qiu, S., He, B., Yin, C. and Liao, Z. 2017 Assessments of Sentinel 2 vegetation red-edge spectral bands for improving land cover classification. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 42, 1055-1059.
17. Poortinga, A., Thwal, N.S., Khanal, N., Mayer, T., Bhandari, B., Markert, K. et al. 2021 Mapping sugarcane in Thailand using transfer learning, a lightweight convolutional Neural Network, NICFI high resolution satellite imagery and Google Earth Engine. ISPRS Open Journal of Photogrammetry and Remote Sensing, 100003.
18. Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T.D. et al. 2018 Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine learning: a case study of the Hyrcanian forest area (Iran). Remote Sensing, 10 (2), 172.
19. Gizachew, B., Solberg, S., Næsset, E., Gobakken, T., Bollandsås, O.M., Breidenbach, J. et al. 2016 Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon balance and management, 11 (1), 1-14.
20. Jha, N., Tripathi, N.K., Barbier, N., Virdis, S.G., Chanthorn, W., Viennois, G. et al. 2021 The real potential of current passive satellite data to map aboveground biomass in tropical forests. Remote Sensing in Ecology and Conservation.
21. Chen, L., Ren, C., Zhang, B., Wang, Z. and Xi, Y. 2018 Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests, 9 (10), 582.
22. Nuthammachot, N., Phairuang, W., Wicaksono, P. and Sayektiningsih, T. 2018 Estimating aboveground biomass on private forest using Sentinel-2 imagery. Journal of Sensors, 2018.
23. Jiang, F., Zhao, F., Ma, K., Li, D. and Sun, H. 2021 Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sensing, 13 (8), 1535.
24. Cosenza, D.N., Korhonen, L., Maltamo, M., Packalen, P., Strunk, J.L., Næsset, E. et al. 2021 Comparison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction of growing stock. Forestry: An International Journal of Forest Research, 94 (2), 311-323.
25. Ahmad, A., Gilani, H. and Ahmad, S.R. 2021 Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical Satellite Imagery—A Literature Review. Forests, 12 (7), 914.
26. Fassnacht, F., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P. et al. 2014 Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154, 102-114.
27. Li, Y., Li, M., Li, C. and Liu, Z. 2020 Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific reports, 10 (1), 1-12.
28. Adame-Campos, R.L., Ghilardi, A., Gao, Y., Paneque-Gálvez, J. and Mas, J.-F. 2019 Variables Selection for Aboveground Biomass Estimations Using Satellite Data: A Comparison between Relative Importance Approach and Stepwise Akaike’s Information Criterion. ISPRS International Journal of Geo-Information, 8 (6), 245.
29. Dang, A.T.N., Nandy, S., Srinet, R., Luong, N.V., Ghosh, S. and Kumar, A.S. 2019 Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50, 24-32.
30. Pandit, S., Tsuyuki, S. and Dube, T. 2020 Exploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal. Geocarto International, 35 (16), 1832-1849.
31. Lovett, J.C. 1996 Elevational and latitudinal changes in tree associations and diversity in the Eastern Arc mountains of Tanzania. Journal of Tropical Ecology, 629-650.
32. Msuya, T.S. and Kideghesho, J.R. 2009 The role of traditional management practices in enhancing sustainable use and conservation of medicinal plants in West Usambara Mountains, Tanzania. Tropical Conservation Science, 2 (1), 88-105.
33. Mehtatalo, L. and Mehtatalo, M.L. 2015 Package ‘lmfor’.
34. Näslund, M. 1936 Skogsförsöksanstaltens gallringsförsök i tallskog.
35. Masota, A., Bollandsås, O., Zahabu, E. and Eid, T. 2016 4 ALLOMETRIC BIOMASS AND VOLUME MODELS FOR LOWLAND AND HUMID MONTANE FORESTS. Allometric Tree Biomass and Volume Models in Tanzania, 35.
36. Kirches, G. 2018 Sentinel 2 Global Mosaics: Copernicus Sentinel-2 Global Mosaic (S2GM) within the
Global Land Component of the Copernicus Land Service. Algorithm Theoretical Basis Document JRC:
European Commission.
37. Benjamin, L., Ned, H. and Jakob, S. 2019 RStoolbox: tools for remote sensing data analysis. R package version 0.2, 6.
38. Theofanous, N., Chrysafis, I., Mallinis, G., Domakinis, C., Verde, N. and Siahalou, S. 2021 Aboveground Biomass Estimation in Short Rotation Forest Plantations in Northern Greece Using ESA’s Sentinel Medium-High Resolution Multispectral and Radar Imaging Missions. Forests, 12 (7), 902.
39. Malhi, R.K.M., Anand, A., Srivastava, P.K., Chaudhary, S.K., Pandey, M.K., Behera, M.D. et al. 2021 Synergistic evaluation of Sentinel 1 and 2 for biomass estimation in a tropical forest of India. Advances in Space Research.
40. Mauya, E.W., Koskinen, J., Tegel, K., Hämäläinen, J., Kauranne, T. and Käyhkö, N. 2019 Modelling and predicting the growing stock volume in small-scale plantation forests of Tanzania using multi-sensor image synergy. Forests, 10 (3), 279.
41. Haralick, R.M., Shanmugam, K. and Dinstein, I.H. 1973 Textural features for image classification. IEEE Transactions on systems, man, and cybernetics (6), 610-621.
42. Zvoleff, A. 2020 Package ‘glcm’.
43. Gitelson, A.A., Gritz, Y. and Merzlyak, M.N. 2003 Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology, 160 (3), 271-282.
44. Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. 1974 Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351 (1974), 309.
45. Gitelson, A.A., Kaufman, Y.J. and Merzlyak, M.N. 1996 Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58 (3), 289-298.
46. García, M.L. and Caselles, V. 1991 Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 6 (1), 31-37.
47. Gitelson, A. and Merzlyak, M.N. 1994 Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of plant physiology, 143 (3), 286-292.
48. Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, M. et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data.
49. Puletti, N., Chianucci, F. and Castaldi, C. 2018 Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res, 42, 32-38.
50. Fernández-Manso, A., Fernández-Manso, O. and Quintano, C. 2016 SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. International journal of applied earth observation and geoinformation, 50, 170-175.
51. Huete, A., Liu, H., Batchily, K. and Van Leeuwen, W. 1997 A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment, 59 (3), 440-451.
52. Huete, A.R. 1988 A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25 (3), 295-309.
53. Jiang, Z., Huete, A.R., Didan, K. and Miura, T. 2008 Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment, 112 (10), 3833-3845.
54. Hijmans, R.J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A. et al. 2015 Package ‘raster’. R package, 734.
55. Zuur, A.F., Hilbe, J.M. and Ieno, E.N. 2013 A Beginner's Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. Highland Statistics Limited.
56. Lumley, T. and Lumley, M.T. 2013 Package ‘leaps’. Regression subset selection. Thomas Lumley Based on Fortran Code by Alan Miller. Available online: http://CRAN. R-project. org/package= leaps (Accessed on 18 March 2018).
57. Nelson, R., Margolis, H., Montesano, P., Sun, G., Cook, B., Corp, L. et al. 2017 Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sensing of Environment, 188, 127-140.
58. Belgiu, M. and Drăguţ, L. 2016 Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31.
59. Breiman, L. 2001 Random forests. Machine learning, 45 (1), 5-32.
60. Hayashi, R., Weiskittel, A. and Sader, S. 2014 Assessing the feasibility of low-density LiDAR for stand inventory attribute predictions in complex and managed forests of northern Maine, USA. Forests, 5 (2), 363-383.
61. Genuer, R., Poggi, J.-M. and Tuleau-Malot, C. 2015 VSURF: an R package for variable selection using random forests. The R Journal, 7 (2), 19-33.
62. Oshiro, T.M., Perez, P.S. and Baranauskas, J.A. How many trees in a random forest? Springer, pp. 154-168.
63. Probst, P., Wright, M.N. and Boulesteix, A.L. 2019 Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9 (3), e1301.
64. Fassnacht, F.E., Poblete-Olivares, J., Rivero, L., Lopatin, J., Ceballos-Comisso, A. and Galleguillos, M. 2021 Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple vegetation types. International Journal of Applied Earth Observation and Geoinformation, 94, 102236.
65. James, G., Witten, D., Hastie, T. and Tibshirani, R. 2013 An introduction to statistical learning. Springer.
66. Kuhn, M. and Johnson, K. 2013 Applied predictive modeling. Springer.
67. Mbwambo, L., Eid, T., Malimbwi, R., Zahabu, E., Kajembe, G. and Luoga, E. 2012 Impact of decentralised forest management on forest resource conditions in Tanzania. Forests, Trees and Livelihoods, 21 (2), 97-113.
68. Munishi, P. and Shear, T. 2004 Carbon storage in Afromontane rain forests of the Eastern Arc mountains of Tanzania: their net contribution to atmospheric carbon. Journal of Tropical Forest Science, 78-93.
69. Cutler, M., Boyd, D., Foody, G. and Vetrivel, A. 2012 Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 66-77.
70. Ghosh, S.M. and Behera, M.D. 2018 Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96, 29-40.
71. Pandit, S., Tsuyuki, S. and Dube, T. 2018 Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel 2 data. Remote Sensing, 10 (4), 601.
72. Taddese, H., Asrat, Z., Burud, I., Gobakken, T., Ørka, H.O., Dick, Ø.B. et al. 2020 Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sensing, 12 (20), 3335.
73. Vashum, K.T. and Jayakumar, S. 2012 Methods to estimate above-ground biomass and carbon stock in natural forests-a review. J. Ecosyst. Ecogr, 2 (4), 1-7.
74. Eckert, S. 2012 Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote sensing, 4 (4), 810-829.
75. Nichol, J.E. and Sarker, M.L.R. 2010 Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Transactions on Geoscience and Remote Sensing, 49 (3), 930-948.
76. Kelsey, K.C. and Neff, J.C. 2014 Estimates of aboveground biomass from texture analysis of Landsat imagery. Remote Sensing, 6 (7), 6407-6422.
77. Gao, Y., Lu, D., Li, G., Wang, G., Chen, Q., Liu, L. et al. 2018 Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sensing, 10 (4), 627.
78. Lu, D., Batistella, M. and Moran, E. 2005 Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogrammetric Engineering & Remote Sensing, 71 (8), 967-974.
79. Bannari, A., Morin, D., Bonn, F. and Huete, A. 1995 A review of vegetation indices. Remote sensing reviews, 13 (1-2), 95-120.
80. Barbosa, J., Broadbent, E. and Bitencourt, M. 2014 Remote sensing of aboveground biomass in tropical secondary forests: A review. International Journal of Forestry Research, 2014.
81. Forkuor, G., Zoungrana, J.-B.B., Dimobe, K., Ouattara, B., Vadrevu, K.P. and Tondoh, J.E. 2020 Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets-A case study. Remote Sensing of Environment, 236, 111496.
82. López-Serrano, P.M., López-Sánchez, C.A., Alvarez-Gonzalez, J.G. and Garcia-Gutierrez, J. 2016 A comparison of machine learning techniques applied to Landsat-5 TM spectral data for biomass estimation. Canadian Journal of Remote Sensing, 42 (6), 690-705.
83. Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y. and Yu, S. 2016 Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sensing, 8 (6), 469.
84. Mauya, E.W., Hansen, E.H., Gobakken, T., Bollandsås, O.M., Malimbwi, R.E. and Næsset, E. 2015 Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon balance and management, 10 (1), 10.