With the recent success of using the time series to vast applications, one would expect its boundless adaptation to problems like nonlinear control and nonlinearity quantification. Though there exist many system identification methods, finding suitable method for identifying a given process is still cryptic. Moreover, to this notch, research on their usage to nonlinear system identification and classification of nonlinearity remains limited. This article hovers around the central idea of developing a ‘kSINDYc’ (key term based Sparse Identification of Nonlinear Dynamics with control) algorithm to capture the nonlinear dynamics of typical physical systems. Furthermore, existing two reliable identification methods namely NL2SQ (Nonlinear least square method) and N3ARX (Neural network based nonlinear auto regressive exogenous input scheme) are also considered for all the physical process-case studies. The primary spotlight of present research is to encapsulate the nonlinear dynamics identified for any process with its nonlinearity level through a mathematical measurement tool. The nonlinear metric Convergence Area based Nonlinear Measure (CANM) calculates the process nonlinearity in the dynamic physical systems and classifies them under mild, medium and highly nonlinear categories. Simulation studies are carried-out on five industrial systems with divergent nonlinear dynamics. The user can make a flawless choice of specific identification methods suitable for given process by finding the nonlinear metric (Δ0). Finally, parametric sensitivity on the measurement has been studied on CSTR and Bioreactor to evaluate the efficacy of kSINDYc on system identification.