1 Cowan, D. A., Makhalanyane, T. P., Dennis, P. G. & Hopkins, D. W. Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in microbiology 5, 154, doi:10.3389/fmicb.2014.00154 (2014).
2 Leung, P. M. et al. Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems. 5, e00495-00419, doi:doi:10.1128/mSystems.00495-19 (2020).
3 Kleinteich, J. et al. Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change. 5, doi:10.3389/fevo.2017.00137 (2017).
4 Neufeld, J. D. & Mohn, W. W. Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Applied and environmental microbiology 71, 5710-5718, doi:10.1128/aem.71.10.5710-5718.2005 (2005).
5 Tindall, B. J. Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microbial ecology 47, 271-283, doi:10.1007/s00248-003-1050-7 (2004).
6 Lambrechts, S., Willems, A. & Tahon, G. Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach. 10, doi:10.3389/fmicb.2019.00242 (2019).
7 Pearce, D. A. in Adaption of Microbial Life to Environmental Extremes: Novel Research Results and Application (eds Helga Stan-Lotter & Sergiu Fendrihan) 87-118 (Springer Vienna, 2012).
8 Alsop, T. in Encyclopedia of World Climatology (ed John E. Oliver) 651-655 (Springer Netherlands, 2005).
9 Fahey, D. et al. (World Meteorological Organization, 2018).
10 Bay, S., Ferrari, B. & Greening, C. Life without water: How do bacteria generate biomass in desert ecosystems? Microbiology Australia 39, 28-32, doi:10.1071/MA18008 (2018).
11 Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400-403, doi:10.1038/nature25014 (2017).
12 Ray, A. E. et al. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation. 11, doi:10.3389/fmicb.2020.01936 (2020).
13 Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9, 119-130, doi:10.1038/nrmicro2504 (2011).
14 Bay, S. et al. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. The ISME Journal, doi:10.1038/s41396-021-01001-0 (2021).
15 Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H<sub>2</sub> using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proceedings of the National Academy of Sciences 111, 4257, doi:10.1073/pnas.1320586111 (2014).
16 Greening, C. et al. Persistence of the dominant soil phylum <em>Acidobacteria</em> by trace gas scavenging. Proceedings of the National Academy of Sciences 112, 10497, doi:10.1073/pnas.1508385112 (2015).
17 Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. Isme J 13, 2868-2881, doi:10.1038/s41396-019-0479-8 (2019).
18 Islam, Z. F. et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. The ISME Journal 13, 1801-1813, doi:10.1038/s41396-019-0393-0 (2019).
19 Constant, P., Poissant, L. & Villemur, R. Isolation of Streptomyces sp PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H-2. Isme J 2, 1066-1076, doi:10.1038/ismej.2008.59 (2008).
20 Islam, Z. F. et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. The ISME Journal, doi:10.1038/s41396-020-0713-4 (2020).
21 Constant, P. et al. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. 77, 6027-6035 (2011).
22 Constant, P., Chowdhury, S. P., Pratscher, J. & Conrad, R. J. E. m. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high‐affinity [NiFe]‐hydrogenase. 12, 821-829 (2010).
23 Ortiz, M. et al. A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms. (2020).
24 King Gary, M. Contributions of Atmospheric CO and Hydrogen Uptake to Microbial Dynamics on Recent Hawaiian Volcanic Deposits. Applied and environmental microbiology 69, 4067-4075, doi:10.1128/AEM.69.7.4067-4075.2003 (2003).
25 Lynch, R. C., Darcy, J. L., Kane, N. C., Nemergut, D. R. & Schmidt, S. K. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. 5, doi:10.3389/fmicb.2014.00698 (2014).
26 Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. The ISME journal 10, 761-777, doi:10.1038/ismej.2015.153 (2016).
27 Cary, S. C., McDonald, I. R., Barrett, J. E. & Cowan, D. A. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology 8, 129-138, doi:10.1038/nrmicro2281 (2010).
28 Zhang, E. et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome 8, 37, doi:10.1186/s40168-020-00809-w (2020).
29 Ji, M. et al. Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. Isme J 15, 2692-2707, doi:10.1038/s41396-021-00944-8 (2021).
30 Montgomery, K. et al. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. Environmental Microbiology 23, 4276-4294, doi:https://doi.org/10.1111/1462-2920.15610 (2021).
31 Fang, Y. et al. Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota. mBio 12, e00350-00321, doi:10.1128/mBio.00350-21.
32 Sánchez-Osuna, M., Barbé, J. & Erill, I. Comparative genomics of the DNA damage-inducible network in the Patescibacteria. Environmental Microbiology 19, 3465-3474, doi:https://doi.org/10.1111/1462-2920.13826 (2017).
33 Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology 6, 246-256, doi:10.1038/s41564-020-00811-w (2021).
34 Li, Q.-M., Zhou, Y.-L., Wei, Z.-F. & Wang, Y. Phylogenomic insights into distribution and adaptation of Bdellovibrionota in marine waters. bioRxiv, 2020.2011.2001.364414, doi:10.1101/2020.11.01.364414 (2020).
35 Williams, H. N. & Chen, H. Environmental Regulation of the Distribution and Ecology of Bdellovibrio and Like Organisms. Frontiers in microbiology 11, 545070-545070, doi:10.3389/fmicb.2020.545070 (2020).
36 Imhoff, J. F., Rahn, T., Künzel, S. & Neulinger, S. C. Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins. Frontiers in microbiology 8, 2679-2679, doi:10.3389/fmicb.2017.02679 (2018).
37 Baker, P. L. et al. A Molecular Biology Tool Kit for the Phototrophic Firmicute Heliobacterium modesticaldum. Applied and environmental microbiology 85, doi:10.1128/aem.01287-19 (2019).
38 Tank, M. & Bryant, D. A. Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. 6, doi:10.3389/fmicb.2015.00226 (2015).
39 Zeng, Y. & Koblížek, M. in Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects (ed Patrick C. Hallenbeck) 163-192 (Springer International Publishing, 2017).
40 Zeng, Y. et al. Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes. 11, doi:10.3389/fmicb.2020.606612 (2021).
41 Zeng, Y., Feng, F., Medová, H., Dean, J. & Koblížek, M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proceedings of the National Academy of Sciences 111, 7795, doi:10.1073/pnas.1400295111 (2014).
42 Ward, L. M., Li-Hau, F., Kakegawa, T. & McGlynn, S. E. Complex history of aerobic respiration and phototrophy in the Chloroflexota class Anaerolineae revealed by high-quality draft genome of <em>Ca</em>. Roseilinea mizusawaensis AA3_104. bioRxiv, 2020.2011.2030.404129, doi:10.1101/2020.11.30.404129 (2020).
43 Thiel, V., Fukushima, S.-I., Kanno, N. & Hanada, S. in Encyclopedia of Microbiology (Fourth Edition) (ed Thomas M. Schmidt) 651-662 (Academic Press, 2019).
44 Tourna, M., Maclean, P., Condron, L., O'Callaghan, M. & Wakelin, S. A. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS microbiology ecology 88, 538-549, doi:10.1111/1574-6941.12323 (2014).
45 Anantharaman, K. et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. The ISME Journal 12, 1715-1728, doi:10.1038/s41396-018-0078-0 (2018).
46 Magalhães, C. M., Machado, A., Frank-Fahle, B., Lee, C. K. & Cary, S. C. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. 5, doi:10.3389/fmicb.2014.00515 (2014).
47 Richter, I. et al. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology 89, 347-359, doi:10.1111/1574-6941.12322 (2014).
48 Ayton, J., Aislabie, J., Barker, G. M., Saul, D. & Turner, S. Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environmental Microbiology 12, 689-703, doi:https://doi.org/10.1111/j.1462-2920.2009.02111.x (2010).
49 Tolar, B. B. et al. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. The ISME Journal 10, 2605-2619, doi:10.1038/ismej.2016.61 (2016).
50 Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecological Monographs 84, 203-244, doi:https://doi.org/10.1890/12-2216.1 (2014).
51 Robinson, S. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nature Climate Change 8, 879-884, doi:10.1038/s41558-018-0280-0 (2018).
52 Meier Dimitri, V., Imminger, S., Gillor, O., Woebken, D. & Lax, S. Distribution of Mixotrophy and Desiccation Survival Mechanisms across Microbial Genomes in an Arid Biological Soil Crust Community. mSystems 6, e00786-00720, doi:10.1128/mSystems.00786-20.
53 Jordaan, K. et al. Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration. mSystems 5, doi:10.1128/mSystems.01131-20 (2020).
54 Gupta, R. S. & Khadka, B. J. P. r. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. 127, 201-218 (2016).
55 Cardona, T. Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis. PLOS ONE 11, e0151250, doi:10.1371/journal.pone.0151250 (2016).
56 Mohammadi, S. S. et al. The Acidophilic Methanotroph Methylacidimicrobium tartarophylax 4AC Grows as Autotroph on H2 Under Microoxic Conditions. 10, doi:10.3389/fmicb.2019.02352 (2019).
57 Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Scientific Reports 6, 34212, doi:10.1038/srep34212 (2016).
58 Fritsche, E., Paschos, A., Beisel, H.-G., Böck, A. & Huber, R. Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli11Edited by D. C. Rees. Journal of molecular biology 288, 989-998, doi:https://doi.org/10.1006/jmbi.1999.2719 (1999).
59 Schäfer, C. et al. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O2-Tolerant H2 Oxidation. Structure 24, 285-292, doi:https://doi.org/10.1016/j.str.2015.11.010 (2016).
60 Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46, W296-W303, doi:10.1093/nar/gky427 (2018).
61 Dobbek, H., Gremer, L., Kiefersauer, R., Huber, R. & Meyer, O. Catalysis at a dinuclear [CuSMo(<img src="pending:yes" l:ref-type="journal" hwp:journal="pnas" hwp:volume="99" hwp:issue="25" hwp:article="15971" l:sub-ref="inline-graphic-1" l:type="image/*" class="inline-graphic" alt="Graphic"/>O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proceedings of the National Academy of Sciences 99, 15971, doi:10.1073/pnas.212640899 (2002).
62 Montgomery, K. et al. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. Environmental Microbiology n/a, doi:https://doi.org/10.1111/1462-2920.15610 (2021).
63 Ji, M. et al. Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. The ISME Journal, doi:10.1038/s41396-021-00944-8 (2021).
64 Guo, R. & Conrad, R. Extraction and characterization of soil hydrogenases oxidizing atmospheric hydrogen. Soil Biology and Biochemistry 40, 1149-1154, doi:https://doi.org/10.1016/j.soilbio.2007.12.007 (2008).
65 Khdhiri, M. et al. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition. Soil Biology and Biochemistry 85, 1-9, doi:https://doi.org/10.1016/j.soilbio.2015.02.030 (2015).
66 Piché-Choquette, S., Tremblay, J., Tringe, S. G. & Constant, P. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups. PeerJ 4, e1782-e1782, doi:10.7717/peerj.1782 (2016).
67 Ortiz, M. et al. A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms. bioRxiv, 2020.2008.2006.239558, doi:10.1101/2020.08.06.239558 (2020).
68 Constant, P., Chowdhury, S. P., Pratscher, J. & Conrad, R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol 12, 821-829, doi:10.1111/j.1462-2920.2009.02130.x (2010).
69 Finstad, K. M. et al. Microbial Community Structure and the Persistence of Cyanobacterial Populations in Salt Crusts of the Hyperarid Atacama Desert from Genome-Resolved Metagenomics. 8, doi:10.3389/fmicb.2017.01435 (2017).
70 Jung, P. et al. Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. Journal of Phycology 55, 1306-1318, doi:https://doi.org/10.1111/jpy.12908 (2019).
71 Lee, K. C. et al. Stochastic and Deterministic Effects of a Moisture Gradient on Soil Microbial Communities in the McMurdo Dry Valleys of Antarctica. Front Microbiol 9, 2619-2619, doi:10.3389/fmicb.2018.02619 (2018).
72 Leung, P. M. et al. Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems. mSystems 5, e00495-00419, doi:10.1128/mSystems.00495-19 (2020).
73 Tebo, B. M. et al. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6, 179-179, doi:10.3389/fmicb.2015.00179 (2015).
74 Tamura, T. et al. Description of Actinomycetospora chibensis sp. nov., Actinomycetospora chlora sp. nov., Actinomycetospora cinnamomea sp. nov., Actinomycetospora corticicola sp. nov., Actinomycetospora lutea sp. nov., Actinomycetospora straminea sp. nov. and Actinomycetospora succinea sp. nov. and emended description. International Journal of Systematic and Evolutionary Microbiology 61, 1275-1280, doi:10.1099/ijs.0.024166-0 (2011).
75 Yamamura, H., Tamura, T., Sakiyama, Y. & Harayama, S. Nocardia amamiensis sp. nov., isolated from a sugar-cane field in Japan. International journal of systematic and evolutionary microbiology 57, 1599, doi:10.1099/ijs.0.64829-0 (2007).
76 Fang, B. Z. et al. Nocardia aurea sp. nov., a novel actinobacterium isolated from a karstic subterranean environment. International Journal of Systematic and Evolutionary Microbiology 69, 159-164, doi:10.1099/ijsem.0.003122 (2019).
77 Jurado, V. et al. Nocardia altamirensis sp. nov., isolated from Altamira cave, Cantabria, Spain. International journal of systematic and evolutionary microbiology 58, 2210, doi:10.1099/ijs.0.65482-0 (2008).
78 Demaree, J. & Smith, N. Nocardia vaccinii n. sp. causing galls on Blue-berry plants. Phytopathology 42 (1952).
79 Li, X. et al. Actinocorallia populi sp. nov., an endophytic actinomycete isolated from a root of Populus adenopoda (Maxim.). International journal of systematic and evolutionary microbiology 68, 2325, doi:10.1099/ijsem.0.002840 (2018).
80 Golovacheva, R. & Karavaĭko, G. J. M. Sulfobacillus, a new genus of thermophilic sporulating bacteria. 47, 815-822 (1978).
81 Schorn, M. A. et al. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology (Reading, England) 162, 2075, doi:10.1099/mic.0.000386 (2016).
82 Klenk, H.-P. et al. Genome sequence of the ocean sediment bacterium Saccharomonospora marina type strain (XMU15(T)). Standards in genomic sciences 6, 265, doi:10.4056/sigs.2655905 (2012).
83 Liu, Z. P., Wu, J. F., Liu, Z. H. & Liu, S. J. Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 56, 555-558, doi:10.1099/ijs.0.63878-0 (2006).
84 Tian, X.-P. et al. Streptomyces nanshensis sp. nov., isolated from the Nansha Islands in the South China Sea. International journal of systematic and evolutionary microbiology 59, 745, doi:10.1099/ijs.0.003442-0 (2009).
85 Maker, A., Hemp, J., Pace, L. A., Ward, L. M. & Fischer, W. W. Draft Genome Sequence of Hydrogenibacillus schlegelii MA48, a Deep-Branching Member of the Bacilli Class of Firmicutes. Genome announcements 5, e00380-00316, doi:10.1128/genomeA.00380-16 (2017).
86 Niu, M.-M. et al. Amycolatopsis nivea sp. nov., isolated from a Yellow River sample. 70, 3084-3090, doi:https://doi.org/10.1099/ijsem.0.004134 (2020).
87 Torkko, P. et al. Mycobacterium palustre sp. nov., a potentially pathogenic, slowly growing mycobacterium isolated from clinical and veterinary specimens and from Finnish stream waters. International journal of systematic and evolutionary microbiology 52, 1519, doi:10.1099/00207713-52-5-1519 (2002).
88 Albuquerque, L. et al. Meiothermus rufus sp. nov., a new slightly thermophilic red-pigmented species and emended description of the genus Meiothermus. Syst Appl Microbiol 32, 306-313, doi:10.1016/j.syapm.2009.05.002 (2009).
89 Chung, A. P., Rainey, F., Nobre, M. F., Burghardt, J. & Costa, M. S. D. Meiothermus cerbereus sp. nov., a New Slightly Thermophilic Species with High Levels of 3-Hydroxy Fatty Acids. 47, 1225-1230, doi:https://doi.org/10.1099/00207713-47-4-1225 (1997).
90 Yoshida, M. et al. Draft Genome Sequence of sp. Strain shizuoka-1, a Novel Mycobacterium Isolated from Groundwater of a Bathing Facility in Shizuoka, Japan. Genome announcements 5, doi:10.1128/genomeA.01309-17 (2017).
91 Trujillo, M. E. & Goodfellow, M. Polyphasic taxonomic study of clinically significant actinomadurae including the description of Actinomadura latina sp. nov. Zentralblatt fur Bakteriologie 285, 212-233, doi:10.1016/S0934-8840(97)80029-1 (1997).
92 Phelippeau, M., Croce, O., Robert, C., Raoult, D. & Drancourt, M. Draft genome sequence of Mycobacterium lentiflavum CSUR P1491. Genome Announcements 3, doi:10.1128/genomeA.00817-15 (2015).
93 Richter, E., Niemann, S., Gloeckner, F. O., Pfyffer, G. E. & Rüsch-Gerdes, S. Mycobacterium holsaticum sp. nov. Int J Syst Evol Microbiol 52, 1991-1996, doi:10.1099/00207713-52-6-1991 (2002).
94 Turenne, C. Y. et al. Mycobacterium saskatchewanense sp. nov., a novel slowly growing scotochromogenic species from human clinical isolates related to Mycobacterium interjectum and Accuprobe-positive for Mycobacterium avium complex. Int J Syst Evol Microbiol 54, 659-667, doi:10.1099/ijs.0.02739-0 (2004).
95 Ustinova, V. et al. First Draft Genome Sequence of a Mycobacterium gordonae Clinical Isolate. Genome Announcements 4, doi:10.1128/genomeA.00638-16 (2016).
96 Tortoli, E. et al. Mycobacterium tusciae sp. nov. International journal of systematic bacteriology 49 Pt 4, 1839-1844, doi:10.1099/00207713-49-4-1839 (1999).
97 Ezeoke, I. et al. Nocardia amikacinitolerans sp. nov., an amikacinresistant human pathogen. International Journal of Systematic and Evolutionary Microbiology 63, 1056-1061, doi:10.1099/ijs.0.039990-0 (2013).
98 Nakazawa, A. et al. [A case of pulmonary Mycobacterium gordonae infection diagnosed by gastric juice culture and successfully treated with multidrug chemotherapy]. Kekkaku : [Tuberculosis] 87, 727-731 (2012).
99 Hashemi Shahraki, A. et al. Mycobacterium aquaticum sp. nov., a rapidly growing species isolated from haemodialysis water. International Journal of Systematic and Evolutionary Microbiology 67, 3279-3282, doi:https://doi.org/10.1099/ijsem.0.002103 (2017).
100 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30, 2114, doi:10.1093/bioinformatics/btu170 (2014).
101 Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676, doi:10.1093/bioinformatics/btv033 (2015).
102 Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. (2014).
103 Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A. & Singer, S. W. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2, 26, doi:10.1186/2049-2618-2-26 (2014).
104 Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165-e1165, doi:10.7717/peerj.1165 (2015).
105 Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359-e7359, doi:10.7717/peerj.7359 (2019).
106 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043-1055, doi:10.1101/gr.186072.114 (2015).
107 Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925-1927, doi:10.1093/bioinformatics/btz848 (2020).
108 Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. The ISME journal 11, 2864-2868, doi:10.1038/ismej.2017.126 (2017).
109 Finn, R. D. et al. Pfam: the protein families database. Nucleic acids research 42, D222-D230, doi:10.1093/nar/gkt1223 (2014).
110 Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421, doi:10.1186/1471-2105-10-421 (2009).
111 The UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research 49, D480-D489, doi:10.1093/nar/gkaa1100 (2021).
112 Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods 18, 366-368, doi:10.1038/s41592-021-01101-x (2021).
113 Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2, e243, doi:10.7717/peerj.243 (2014).
114 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer New York, 2009).
115 Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).
116 Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications 7, 11257, doi:10.1038/ncomms11257 (2016).
117 Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490-495, doi:10.1093/nar/gkt1178 (2014).
118 Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240, doi:10.1093/bioinformatics/btu031 (2014).
119 Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology 305, 567-580, doi:10.1006/jmbi.2000.4315 (2001).
120 Katoh, K., Misawa, K., Kuma, K. i. & Miyata, T. J. N. a. r. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. 30, 3059-3066 (2002).
121 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30, 772-780, doi:10.1093/molbev/mst010 (2013).
122 Capella-Gutiérrez, S., Silla-Martínez, J. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973, doi:10.1093/bioinformatics/btp348 (2009).
123 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution 32, 268-274, doi:10.1093/molbev/msu300 (2015).
124 Guindon, S. et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59, 307-321, doi:10.1093/sysbio/syq010 (2010).
125 Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44, W242-245, doi:10.1093/nar/gkw290 (2016).
126 Gasteiger, E. et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784-3788, doi:10.1093/nar/gkg563 (2003).
127 Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49, D344-d354, doi:10.1093/nar/gkaa977 (2021).