1. Lee, D. H. et al. Recent treatment patterns and survival outcomes in pancreatic cancer according to clinical stage based on single-center large-cohort data. Ann Hepatobiliary Pancreat Surg 22, 386-396, doi:10.14701/ahbps.2018.22.4.386 (2018).
2. Kim, J. R. et al. Clinicopathologic analysis of intraductal papillary neoplasm of bile duct: Korean multicenter cohort study. HPB (Oxford), doi:10.1016/j.hpb.2019.11.007 (2019).
3. Han, Y. et al. Progression of Pancreatic Branch Duct Intraductal Papillary Mucinous Neoplasm Associates With Cyst Size. Gastroenterology 154, 576-584, doi:10.1053/j.gastro.2017.10.013 (2018).
4. Chang, Y. R. et al. Incidental pancreatic cystic neoplasms in an asymptomatic healthy population of 21,745 individuals Large-scale, single-center cohort study. Medicine 95, doi:ARTN e553510.1097/MD.0000000000005535 (2016).
5. Lee, D. H. et al. Central Pancreatectomy Versus Distal Pancreatectomy and Pancreaticoduodenectomy for Benign and Low-Grade Malignant Neoplasms: A Retrospective and Propensity Score-Matched Study with Long-Term Functional Outcomes and Pancreas Volumetry. Ann Surg Oncol 27, 1215-1224, doi:10.1245/s10434-019-08095-z (2020).
6. Shin, Y. C. et al. Comparison of long-term clinical outcomes of external and internal pancreatic stents in pancreaticoduodenectomy: randomized controlled study. HPB (Oxford) 21, 51-59, doi:10.1016/j.hpb.2018.06.1795 (2019).
7. Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V. & Chervyakov, N. I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math Comput Simulat 177, 232-243, doi:10.1016/j.matcom.2020.04.031 (2020).
8. Fu, Y. et al. A review of deep learning based methods for medical image multi-organ segmentation. Phys Med 85, 107-122, doi:10.1016/j.ejmp.2021.05.003 (2021).
9. Karasawa, K. et al. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. Med Image Anal 39, 18-28, doi:10.1016/j.media.2017.03.006 (2017).
10. Lim, S. H. et al. Reproducibility of automated habenula segmentation via deep learning in major depressive disorder and normal controls with 7 Tesla MRI. Sci Rep 11, 13445, doi:10.1038/s41598-021-92952-z (2021).
11. Yan, Y. & Zhang, D. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation. PLoS One 16, e0252287, doi:10.1371/journal.pone.0252287 (2021).
12. Kumar, H., DeSouza, S. V. & Petrov, M. S. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review. Comput Methods Programs Biomed 178, 319-328, doi:10.1016/j.cmpb.2019.07.002 (2019).
13. Li, J., Lin, X., Che, H., Li, H. & Qian, X. Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet. Phys Med Biol 66, doi:10.1088/1361-6560/abfce3 (2021).
14. Roth, H. et al. DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. ArXiv abs/1506.06448 (2015).
15. Marin, D. et al. Detection of Pancreatic Tumors, Image Quality, and Radiation Dose during the Pancreatic Parenchymal Phase: Effect of a Low-Tube-Voltage, High-Tube-Current CT Technique—Preliminary Results. Radiology 256, 450-459, doi:10.1148/radiol.10091819 (2010).
16. Singh, P., Mukundan, R. & De Ryke, R. Feature Enhancement in Medical Ultrasound Videos Using Contrast-Limited Adaptive Histogram Equalization. J Digit Imaging 33, 273-285, doi:10.1007/s10278-019-00211-5 (2020).
17. Anifah, L., Purnama, I. K., Hariadi, M. & Purnomo, M. H. Osteoarthritis classification using self organizing map based on gabor kernel and contrast-limited adaptive histogram equalization. Open Biomed Eng J 7, 18-28, doi:10.2174/1874120701307010018 (2013).
18. Zhang, Y. D. et al. Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simul-T Soc Mod Sim 92, 873-885, doi:10.1177/0037549716667834 (2016).
19. Ravichandran, C. G. & Raja, J. B. A Fast Enhancement/Thresholding Based Blood Vessel Segmentation for Retinal Image Using Contrast Limited Adaptive Histogram Equalization. J Med Imag Health In 4, 567-575, doi:10.1166/jmihi.2014.1289 (2014).
20. Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26, 1045-1057, doi:10.1007/s10278-013-9622-7 (2013).
21. Roth, H. R. et al. Data From Pancreas-CT. The Cancer Imaging Archive., <https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU> (2016).
22. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods 16, 67-70, doi:10.1038/s41592-018-0261-2 (2019).
23. Nazem, F., Ghasemi, F., Fassihi, A. & Dehnavi, A. M. 3D U-Net: A voxel-based method in binding site prediction of protein structure. J Bioinform Comput Biol 19, 2150006, doi:10.1142/S0219720021500062 (2021).
24. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. in International conference on medical image computing and computer-assisted intervention. 424-432 (Springer).
25. Ronneberger, O., Fischer, P. & Brox, T. in International Conference on Medical image computing and computer-assisted intervention. 234-241 (Springer).
26. Ioffe, S. & Szegedy, C. in International conference on machine learning. 448-456 (PMLR).
27. Wu, H., Zhang, J., Huang, K., Liang, K. & Yu, Y. Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation. arXiv preprint arXiv:1903.11816 (2019).
28. Iandola, F. et al. Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014).
29. Ding, P. L. K., Li, Z., Zhou, Y. & Li, B. in Medical Imaging 2019: Image Processing. 109490F (International Society for Optics and Photonics).
30. Wang, W. et al. in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). 207-211.
31. Gros, C., Lemay, A. & Cohen-Adad, J. SoftSeg: Advantages of soft versus binary training for image segmentation. Med Image Anal 71, 102038, doi:10.1016/j.media.2021.102038 (2021).